Electricity Monitoring With A Light-to-Voltage Sensor, MQTT And Some Duct Tape

Bh6mcz_CUAAuI3V

When it comes down to energy management, having real-time data is key. But rarely is up-to-the-minute kilowatt hour information given out freely by a Utility company, which makes it extremely hard to adjust spending habits during the billing cycle. So when we heard about [Jon]’s project to translate light signals radiating out of his meter, we had to check it out.

From the looks of it, his hardware configuration is relatively simple. All it uses is a TSL261 Light-to-Voltage sensor connected to an Arduino with an Ethernet shield attached. The sensor is then taped above the meter’s flashing LED, which flickers whenever a pulse is sent out indicating every time a watt of electricity is used. His configuration is specific to the type of meter that was installed by his Utility, and there is no guarantee that all the meters deployed by that company are the same. But it is a good start towards a better energy monitoring solution.

And the entire process is documented on [Jon]’s website, allowing for more energy-curious people to see what it took to get it all hooked up. In it, he describes how to get started with MQTT, which is a machine-to-machine (M2M)/”Internet of Things” connectivity protocol, to produce a real-time graph, streaming data in from a live feed.

Continue reading “Electricity Monitoring With A Light-to-Voltage Sensor, MQTT And Some Duct Tape”

A Cheap DIY Smoke Detector That Can Save Lives

2014-07-19-16.33.53 A faulty wire, a discarded burning cigarette, or a left-on curling iron can trigger sparks of fire to engulf everything nearby until all that’s left is brittle mounds of smoldering ash. Which is why smoke detectors are so important. They are life saving devices that can wake people up sleeping inside, well before the silent, but deadly carbon monoxide starts to kick in. But what happens if no one is home, and the alarm begins to blare? The place burns down into the ground without the owners knowing.

So when [Martin] purchased a battery-powered smoke detector and rigged it up to notify him exactly when the piezo siren is activated, the evolution of the automatic fire alarm continued into the realm of wireless internet-connected things.

His home automation system (a Raspberry Pi running Node-Red) links to a Funky ATTiny84-based sensor and transmits the data wirelessly, redirecting the information to his phone. SMS messages can be sent, as well as emails and pushbullet notifications. Once the piezo siren starts to sing, the system alerts him that smoke has been detected and that he should check on it as soon as possible.

The electronics fit perfectly inside the case waiting for any smoky disturbance in the room to light up. And what makes this project even better, besides the life saving capabilities and the instant push notifications, is that it was hooked up for the cheap. No need to buy a brand-new, expensive Nest protect, when all it takes it a sensor or two and a Raspberry Pi to hack the fire alarm that already sits in the house.

This video coming up after the break shows how simple it is to make. Continue reading “A Cheap DIY Smoke Detector That Can Save Lives”

Control This Pedestrian Walk Signal Online!

Capture

[Jon Bennett] is an electrical engineer who specializes in embedded systems software. He was the first employee of Pebble Technology and the lead developer of the inPulse Smart Watch. He has studied at the University of Waterloo during which he completed several interesting internships, including working on Bluetooth and WiFi embedded software for the iPhone (Apple, 2007). Now, he has hooked up this pedestrian walk signal — picked up at an electronics surplus store — to the internet.

The web-enable project utilizes a Spark Core Wifi Module, which is an Arduino-like micro-controller with more power, to wirelessly connect to the device. With the click of a button, the hand signal can be flashed. The walking illuminated man can be triggered with another press. Messages can be sent scrolling across the LED’s flashing by in sets of two simply by hitting enter.

All the source code has been posted on Github in case anyone wants to create their own.

Capture

[Jon]’s previous work can be found in a few of our featured articles from a couple of years ago. There’s the Thrift Shop Wifi Router Robot he made that could be controlled through the internet. He also built this interactive bubble music visualizer, and this programmable RC car that can be driven by a computer.

What will he think of next??

HOPE X: Creating Smart Spaces With ReelyActive

When we hear about the Internet of Things, we’re thinking it’s a portable device with a sensor of some kind, a radio module, and the ability to push data up to the Internet. There’s nothing that says a device that puts data on the Internet has to be portable, though, as [Jeff] from ReelyActive showed us at HOPE X last weekend.

[Jeff]’s startup is working on a device that turns every space into a smart space. It does this with radio modules connected to a computer that listen to Bluetooth and the 868, 915 and 2400MHz bands. These modules turn every place into a smart space, identifying who just walked into a room, and who is at a specific location. Think of it as the invisible foundation for any truly smart house.

The radio modules themselves are daisychained with Cat5 cable, able to be plugged into a hub or existing Ethernet drops. The software that makes the whole thing work can run on just about anything; if you want a Raspi to turn on the lights when you enter a room, or turn off a thermostat when you leave a building, that’s just a few lines of code and a relay.

The software is open source, and [Jeff] and his team are looking at making the hardware open. It’s a great idea, and something that would be a good entry for The Hackaday Prize, but ReelyActive is located in Montréal, and like Syria and North Korea, we’re not allowed to run a contest in Quebec.

Pinoccio: Mesh All The (Internet Of) Things

PinnThere’s a problem with products geared towards building the Internet of Things. Everyone building hardware needs investors, and thus some way to monetize their platform. This means all your data is pushed to ‘the cloud’, i.e. a server you don’t own. This is obviously not ideal for the Hackaday crowd. Yes, IoT can be done with a few cheap radios and a hacked router, but then you don’t get all the cool features of a real Things project – mesh networking and a well designed network. Pinoccio is the first Thing we’ve seen that puts a proper mesh network together with a server you can own. The Pinoccio team were kind enough to let us drop in while we were in Rock City last weekend, and we were able to get the scoop on these tiny boards from [Sally] and [Eric], along with a really cool demo of what they can do.

The hardware on the Pinoccio is basically an Arduino Mega with a LiPo battery and an 802.15.4 radio provided by an ATmega256RFR2. The base board – technically called a ‘field scout’ – can be equipped with a WiFi backpack that serves as a bridge for the WiFi network. It’s a pretty clever solution to putting a whole lot of Things on a network, without having all the Things directly connected to the Internet.

Programming these scouts can be done through Arduino, of course, but the folks at Pinoccio also came up with something called ScoutScript that allows you to send commands directly to any or all of the scouts on the mesh network. There’s a neat web-based GUI called HQ that allows you to command, control, and query all the little nodules remotely as well.

In the video below, [Sally] goes over the basic functions of the hardware and what it’s capable of. [Eric] was in Reno when we visited, but he was kind enough to get on a video chat and show off what a network of Pinoccios are capable of by emblazoning their web page with Hackaday logos whenever he presses a button.

Continue reading “Pinoccio: Mesh All The (Internet Of) Things”

Stealing WiFi From LED Lightbulbs

LIFX Wireless LED PCB

Back in 2012, the LIFX light bulb launched on Kickstarter, and was quite successful. This wireless LED lightbulb uses a combination of WiFi and 6LoWPAN to create a network of lightbulbs within your house. Context Information Security took a look into these devices, and found some security issues.

The LIFX system has a master bulb. This is the only bulb which connects to WiFi, and it sends all commands out to the remaining bulbs over 6LoWPAN. To keep the network up, any bulb can become a master if required. This means the WiFi credentials need to be shared between all the bulbs.

Looking into the protocol, an encrypted binary blob containing WiFi credentials was found. This binary could easily be recovered using an AVR Raven evaluation kit, but was not readable since it was encrypted.

After cracking a bulb apart, they found JTAG headers on the main board. A BusBlaster and OpenOCD were used to communicate with the chip. This allowed the firmware to be dumped.

Using IDA Pro, they determined that AES was being used to encrypt the WiFi credentials. With a bit more work, the key and initialization vector was extracted. With this information, WiFi credentials sent over the air could be decrypted.

The good news is that LIFX fixed this issue. Now they generate an encryption key based on WiFi credentials, preventing a globally unique key from being used.

[via reddit]

Web Interface For The FRAM LaunchPad

webUILaunchpad The Internet of Things is here in full force. The first step when adding to the Internet of Things is obvious, adding a web interface to your project. [Jaspreet] wrote in to tell us about his project that adds a web interface to his MSP430 based project, making it easy to add any project to the internet of things.

Creating a web interface can be a bit overwhelming if you have never done it before. This project makes it easy by using a dedicated computer running Linux to handle all of the web related tasks. The LaunchPad simply interfaces with the computer using USB and Python, and the computer hosts the webpage and updates it in real time using Node.js. The result is a very professional looking interface with an impressively responsive display that can control the on-board LEDs, read analog values from the integrated ADC, and stream accelerometer data. Be sure to see it in action after the break!

We could see this project being expanded to run on the Raspberry Pi with a multitude of sensors. What will you add a web interface to next? Home automation? A weather station? Let us know!

Continue reading “Web Interface For The FRAM LaunchPad”