Side Channel Attacks Against Mixed Signal Microcontrollers

You shouldn’t transmit encryption keys over Bluetooth, but that’s exactly what some popular wireless-enabled microcontrollers are already doing. This is the idea behind Screaming Channels, an exploit published by researchers at EUERCOM, and will be a talk at Black Hat next week. So far, the researchers have investigated side-channel attacks on Bluetooth-enabled microcontrollers, allowing them to extract tinyAES keys from up to 10 meters away in controlled environments. A PDF of the paper is available and all the relevant code is available on GitHub.

The experimental setup for this exploit consisted of a BLE Nano, a breakout board for a Nordic nRF52832 Bluetooth microcontroller, a Hack RF, a USRB N210 software defined radio from Ettus, and a few high-gain antennas and LNAs. The example attack relies on installing firmware on the BLE Nano that runs through a few loops and encrypts something with tinyAES. Through very careful analysis of the RF spectrum, the AES keys can be extracted from the ether.

Side channel attacks have received a bit more popularity over recent years. What was once limited to Three Letter Agency-level Van Eck phreaking can now be done inexpensively and in a system with devices like the ChipWhisperer.

Of course, this is only a demonstration of what is possible with side-channel attacks in a highly controlled environment with a significant amount of work gone into the firmware running on the microcontroller. This isn’t evidence that balaclava-wearing hackers are sniffing your phone from across the parking lot to get the password to your Instagram account, but it does show what is possible with relatively cheap, off-the-shelf hardware.

NIST Helps You With Cryptography

Getting cryptography right isn’t easy, and it’s a lot worse on constrained devices like microcontrollers. RAM is usually the bottleneck — you will smash your stack computing a SHA-2 hash on an AVR — but other resources like computing power and flash code storage space are also at a premium. Trimming down a standard algorithm to work within these constraints opens up the Pandora’s box of implementation-specific flaws.

NIST stepped up to the plate, starting a lightweight cryptography project in 2013 which has now come out with a first report, and here it is as a PDF. The project is ongoing, so don’t expect a how-to guide. Indeed, most of the report is a description of the problems with crypto on small devices. Given the state of IoT security, just defining the problem is a huge contribution.

Still, there are some concrete recommendations. Here are some spoilers. For encryption, they recommend a trimmed-down version of AES-128, which is a well-tested block cipher on the big machines. For message authentication, they’re happy with Galois/Counter Mode and AES-128.

I was most interested in hashing, and came away disappointed; the conclusion is that the SHA-2 and SHA-3 families simply require too much state (and RAM) and they make no recommendation, leaving you to pick among less-known functions: check out PHOTON or SPONGENT, and they’re still being actively researched.

If you think small-device security is easy, read through the 22-question checklist that starts on page twelve. And if you’re looking for a good starting point to read up on the state of the art, the bibliography is extensive.

Your tax dollars at work. Thanks, NIST!

And thanks [acs] for the tip!

AES-CMAC On An ATtiny85

[Blancmange] built a custom door chime using an ATtiny85. Unlike most commercial products out there, this one actually tries to be secure, using AES-CMAC for message signing.

The hardware is pretty simple, and a protoboard layout is shown in the image above. It uses the ATtiny85 for control, with an LM380N audio amplifier, and a low cost 315 MHz receiver.

The more impressive part of the build is the firmware. Using AVR assembly, [Blancmange] managed to fit everything into the 8 Kbytes of flash on the ATtiny85. This includes an implementation of AES-CMAC, an AES cypher based message authentication code. The transmitting device signs the request with a key shared between both devices, and the receiver verifies that the message is from a trusted transmitter.

Fortunately, the assembly code is very well commented. If you’ve ever wanted to take a look into some complex ASM assembly, this is a great project to check out. The source code has been released into the public domain, so the rest of us can implement crypto on this cheap microcontroller with much less effort.

Stealing WiFi From LED Lightbulbs

LIFX Wireless LED PCB

Back in 2012, the LIFX light bulb launched on Kickstarter, and was quite successful. This wireless LED lightbulb uses a combination of WiFi and 6LoWPAN to create a network of lightbulbs within your house. Context Information Security took a look into these devices, and found some security issues.

The LIFX system has a master bulb. This is the only bulb which connects to WiFi, and it sends all commands out to the remaining bulbs over 6LoWPAN. To keep the network up, any bulb can become a master if required. This means the WiFi credentials need to be shared between all the bulbs.

Looking into the protocol, an encrypted binary blob containing WiFi credentials was found. This binary could easily be recovered using an AVR Raven evaluation kit, but was not readable since it was encrypted.

After cracking a bulb apart, they found JTAG headers on the main board. A BusBlaster and OpenOCD were used to communicate with the chip. This allowed the firmware to be dumped.

Using IDA Pro, they determined that AES was being used to encrypt the WiFi credentials. With a bit more work, the key and initialization vector was extracted. With this information, WiFi credentials sent over the air could be decrypted.

The good news is that LIFX fixed this issue. Now they generate an encryption key based on WiFi credentials, preventing a globally unique key from being used.

[via reddit]

Final Key : A Mooltipass-like Device

Since the Hackaday community started working on our offline password keeper, Mooltipass, we’ve received several similar projects in our tips line. The Final Key may be the most professional looking one yet. Similarly to the Mooltipass, it is based on an Atmel ATMega32U4 but only includes one button and one LED, all enclosed in a 3D printed case.

The Final Key is connected to the host computer via USB and is enumerated as a composite Communication Device / HID Keyboard, requiring windows-based devices to install drivers. AES-256 encrypted passwords are stored on the device and can only be accessed once the button has been pressed and the correct 256 bit password has been presented through the command line interface. Credentials management and access is also done through the latter. Unfortunately, the Arduino source code can’t be found on [cyberstalker]’s website, so if you see interesting features that you would like to be integrated in Mooltipass you may send us a message to our Google Group.

Wireless Encryption Between Galileo And A MSP430

[Mark] recently finished his latest project, where he encrypts wireless communications between the new Intel Galileo and a Texas Instruments MSP430. The wireless interfaces used are the very common nRF24L01+ 2.4GHz transceivers, that had a direct line of sight 15 feet range during [Mark]’s tests. In his demonstration, the MSP430 sends an encrypted block of data representing the state of six of its pins configured as inputs. This message is then received by a sketch running on the Galileo and stored in shared memory. A python script then wakes up and is in charge of decrypting the message. The encryption is done using AES-128bits in Electronic Codebook mode (ECB) and semaphores are used to prevent simultaneous accesses to the received data. As it is the first project using an Intel Galileo we received, don’t hesitate to send us a tip if you found other ones.

Zigbee AES Key Sniffing

zigbeesniffing

[Travis Goodspeed] posted a preview of what he’s working on for this Summer’s conferences. Last weekend he gave a quick demo of sniffing AES128 keys on Zigbee hardware at SOURCE Boston. The CC2420 radio module is used in many Zigbee/802.15.4 sensor networks and the keys have to be transferred over an SPI bus to the module. [Travis] used two syringe probes to monitor the clock line and the data on a TelosB mote, which uses the CC2420. Now that he has the capture, he’s planning on creating a script to automate finding the key.