Building A Network Controllable RGB LED Lamp From An Old Scanner

EthernetLamp

Being able to use one of your old projects to make a new one better can be quite satisfying. [Steve] from Hackshed did just this: he integrated an Arduino based webserver into a new network controllable RGB lamp.

What makes this lamp unique is that the RGB LED bar comes from an old Epson scanner. Recycling leftover parts from old projects or derelict electronics is truly the hacker way. After determining the pinout and correct voltage to run the LEDs at, the fun began. With the LED bar working correctly, the next step was to integrate an Arduino based webserver. Using an SD card to host the website and an Ethernet Arduino shield, the LEDs become network controllable. Without missing a beat, [Steve] integrated a Javascript based color picker that supports multiple web browsers. This allows the interface to look quite professional. Be sure to watch the lamp in action after the break!

The overall result is an amazing color changing lamp that works perfectly. All that is left to do is create a case for it, or integrate it into an existing lamp. This is a great way to use an LED strip that would have otherwise gone to waste. If you can’t find a scanner with a color wand like this one, you can always start with an RGB strip.

Continue reading “Building A Network Controllable RGB LED Lamp From An Old Scanner”

Hackaday Links: March 9, 2014

hackaday-links-chain

Thinking about starting a CNC machine, 3D printer, or laser cutter project? Misumi has you covered. They’re offering up $150 worth of free stuff with a coupon code. [CharlieX] is putting together a BuildLog laser cutter, a whole bunch of people on reddit are building 3D printers, and I have most of the rods for an i3 build. Just use the promotion code First150 on your order. Actually, read the terms and conditions, but rest assured – this is legit.

A few months ago, we saw this Enigma cypher machine that combines the classic late-30s aesthetic of the original with modern hardware – including a few 16-segment displays. Now there’s a Kickstarter for the Open Source Enigma replica, and it looks like it’s going to end up being pretty popular. Here’s the site with all the deets. Check out that QWERTZ keyboard.

[Jason] has a love of LEGO and a terrible keyboard. Combine the two and he came up with a functional LEGO keyboard. The electronics are, sadly, an old PS/2 membrane keyboard, but the mechanicals are a work of art – all the keys are mounted on a grid of Technic parts that can be positioned over each of the membrane buttons.

Want a really cool look for your next enclosure? How about LED pipes? They’re those clear plastic bits that direct the light from LEDs around corners and can make any enclosure looks like a Star Trek set piece. You can cut these things with a laser cutter like the Alima team did with their indoor air quality meter. Looks pretty cool.

Fail Of The Week: WS2811 Pixel Failure On FLED

This Fail of the Week project comes from one of Hackaday’s own. [Ben] took on the FLED data visualization project as a way to make the SupplyFrame decor a lot more fun. He had quite a bit of help soldering the 96 WS2811 pixels into their custom made 6’x4′ enclosure and the results are really awesome. In addition to showing server load and playing games, FLED has become something of a job interview. Sit the prospective employee down at a terminal and give them an hour to code the most interesting visualization they are capable of.

But two weeks ago [Ben] staggered into the office and found the display was dead. Did he try turning it off and back on again? Yes, but to no avail. The power supply wasn’t the issue and there was no option but to pull the display off the wall and crack it open for a look at all those pixels. Since every one of them had 4 solder joints on either side he figured the problem was with a broken connection. But not so. He resorted to a binary search for the offending pixel by  cutting the strand in half, and testing each portion. He tracked it down to the pixel whose underside was blackened as you can see above.

[Ben] thinks one of the capacitors inside the sealed enclosure blew, but isn’t certain. Feel free to tell us what you think failed in this component. But the thing we’d really like to know is if there is a more clever way to sniff out the offensive pixel without cutting the connections? Four hours on the floor with this thing (and no knee-pads) and [Ben] has sworn off sourcing pixels from random Chinese suppliers. He might go with pre-assembled strings next time. We chuckle; this is the high-tech equivalent of trying to get old strands of Christmas lights to work.

If you haven’t seen FLED in action, check it out after the break. It amazing how LED intensity and quality diffuser material can make a perfect grid of LEDs seem to dance in waves and color curves.

Continue reading “Fail Of The Week: WS2811 Pixel Failure On FLED”

RFID Jacket Flashes The Crowd At Make Fashion 2014

RFID-DRESS

The [RADLab team] has created an eye-opening RFID jacket for Make Fashion 2014. For this project, [Dan Damron, Chris Zaal, and Ben Reed] of RADLab teamed up with designer [Laura Dempsey] to create a jacket which responded both to a dancer on the runway and the audience itself. RADLab stands for Radio Frequency Identification Application Development Lab, so you can probably guess that RFID was their weapon of choice for interaction. We’ve got a bit of RFID experience here at Hackaday, having recently used it at The Gathering in LA. The [RADLab team] didn’t skimp on processing power for this jacket. A BeagleBone Black running Debian controls the show. The BeagleBone receives data from a Thingmagic M6e 4 port UHF RFID Reader. The M6e is connected to 4 directional antennas. The BeagleBone responds differently depending on which RFID card is read, and which antenna reads it. With the data processed, the BeagleBone then issues commands to a teensy 3.0, which controls  WS2811 “Neopixel” addressable RGB LEDs sewn into the jacket.

During the fashion show, the jacket wearer danced with a second model who had RFID tags sewn into his t-shirt. The LED clusters on the front, back and sleeves of the jacket would light up, and change color and flash frequency based upon which tag and antenna got a read. Once the performance was over, the audience was encouraged to pick up tags and interact with the jacket themselves. The software was still very much beta, so the [RADLab team] monitored everything via WiFi and restarted the software when necessary.

Continue reading “RFID Jacket Flashes The Crowd At Make Fashion 2014”

Making OLEDs In The Kitchen Sink

When [Ian] first set out to create a homebrew OLED, he found chemical suppliers that wouldn’t take his money, manufacturers that wouldn’t talk to him, and researchers that would actively discourage him. Luckily for us, he powered through all these obstructions and created his own organic LED.

Since at least one conductor in an OLED must be transparent, [Ian] settled on ITO – indium tin oxide – for the anode. This clear coating is deposited on glass, allowing it to conduct electricity and you can buy it through a few interesting suppliers. For the cathode, [Ian] is using a gallium-indium-tin eutectic, an alloy with a very low melting point that allowed him to deposit a small puddle in his OLED stack.

With the anode and cathode taken care of, the only thing left was the actual LED. For this, [Ian] had some success with MEH-PPV, a polymer that is capable of electroluminescence. On top of this is a film of PEDOT:PPS, another polymer that serves to block electrons.

The resulting yellow-green blob of an OLED actually works, and is at least as good as some of the other homebrew semiconductor illumination projects we’ve seen around here. This is only a start, though, and [Ian] plans on putting a whole lot more time into his explorations of organic LEDs.

 

Reverse Engineering Candle Flicker LEDs, Again

Flickering candle LEDs are seemingly everywhere these days, and like all fads, someone has to take a very close look at the engineering behind them.

[cpldcpu] had earlier taken a look at the controller chip in these candle flicker LEDs by measuring the current used and developing a statistical model of how these LEDs flicker. That’s math, of course, and much more fun can be had by decapsulating one of these flicker LED controller chips. It’s not very advanced tech; the LED controller is using a 1 or 2um process and a pair of RC oscillators, but it appears there could be a hardware random number generator in the silicon of this chip.

Earlier, [Cpldcpu] had taken a look at the tiny controller in these flickering LEDs and determined they used a linear feedback shift register to generate pseudorandom LED intensities. The new teardown seems to confirm that a linear feedback shift register is being used to drive the flickering LED.

Custom chips are only one way to skin a cat, or flicker a LED, and PICatout used the the tiniest PIC microcontroller (French, translation) to create his own flickering LED. Seems like making a few custom flickering LED throwies shouldn’t be too hard.

Breadboardable WS2812 LEDs

LED

Hackaday sees a ton of projects featuring the WS2812 series of digitally controllable RGB LEDs, in the form of bare chips, RGB LED strips, or some form of Adafruit’s NeoPixels. All these WS2812 LED products have one thing in common – they’re chip LEDs, making some projects difficult to realize. Now there’s a new member of the WS2812 family – a through-hole LED version – that should be available through the usual sources sometime later this year.

The key difference between these and the usual WS2812 LEDs is the packaging; these are 8mm LEDs with pins for power, ground, data in, and data out. With the preexisting libraries, this 8mm LED should work just the same as any other WS2812 LED.

Aside from a through-hole package, these new LEDs are very diffuse and aren’t as blinding as the normal chip LEDs. If you want to pick up a few of these LEDs, they’re available here, 13 LEDs for $15. There’s a lot of potential here for RGB LED cubes, something we hope to see sooner rather than later.