[Dino] Brings The Waterproof Fire

firestarter

For many of our parents, grandparents, and great grandparents, the things we consider hacking, making, and doing weren’t just for fun. They were important skills that could help one survive. This week [Dino] shows us something his dad taught him: waterproof fire starters. The trick is paraffin wax. [Dino] starts by melting down some wax in a pot. He then dips strips of newspaper in the liquid wax. Several strike anywhere matches also get the wax treatment, are then placed on the newspaper. The newspaper and matches are rolled up into a tight bundle, which is itself dipped in wax several times.

The resulting small bundle of waxed newspaper and matches is safe and easy to carry in pocket or backpack. It also becomes the perfect wet fire starter. The “newspaper shell” is torn off into strips of waxed paper, which burns slowly and allows the tinder and wood to catch. [Dino] demonstrates his pioneering skills by starting a fire at the end of the video. When the inevitable zombie apocalypse hits, we definitely want [Dino] at the Hackaday compound.

Continue reading “[Dino] Brings The Waterproof Fire”

Remote Controlled Lawn Mower Lets You Sit Back And Enjoy The Show

“Its hard to find people that actually WANT to mow their lawn.” A more true statement has never been made. [Kurt’s] project turns an old lawn mower into a remote control lawn mower.

The first step of this build is to replace the front drive wheels with mini-bike tires which have built-in gear tooth sprockets. The rear wheels were then replaced with large caster wheels. The 12-24V DC motors and gear boxes used come from National Power Chair. While we have seen more complicated RC lawn mowers before, this project is a great way to get started. All that [Kurt] wanted was to make lawn mowing more fun, we believe that he has succeeded. This thing is very mobile and can turn on a dime. Check out the demo video after the break.

What’s next? Add a GPS, a Raspberry Pi, and a few other odds and ends. Tie it together with some clever programming and you will have your own autonomous lawn mower. Have you already created a completely autonomous lawn mower? Let us know!
Continue reading “Remote Controlled Lawn Mower Lets You Sit Back And Enjoy The Show”

Breadboardable WS2812 LEDs

LED

Hackaday sees a ton of projects featuring the WS2812 series of digitally controllable RGB LEDs, in the form of bare chips, RGB LED strips, or some form of Adafruit’s NeoPixels. All these WS2812 LED products have one thing in common – they’re chip LEDs, making some projects difficult to realize. Now there’s a new member of the WS2812 family – a through-hole LED version – that should be available through the usual sources sometime later this year.

The key difference between these and the usual WS2812 LEDs is the packaging; these are 8mm LEDs with pins for power, ground, data in, and data out. With the preexisting libraries, this 8mm LED should work just the same as any other WS2812 LED.

Aside from a through-hole package, these new LEDs are very diffuse and aren’t as blinding as the normal chip LEDs. If you want to pick up a few of these LEDs, they’re available here, 13 LEDs for $15. There’s a lot of potential here for RGB LED cubes, something we hope to see sooner rather than later.

DIY Ceiling Rack Keeps Your Bikes Out Of The Way

bikke lift

Need to optimize some space in your garage? Why not build a ceiling mounted winch-assisted bicycle rack!

[Mathieu] already has a rather spacious garage, but wanted to make it even more organized. He built the bicycle rack out of 1″ square aluminum tubing, and it’s all bolted together (no welding required!). The bikes sit in aluminum U-channels to be secured in place. The entire rack is hinged off of the back wall, and a pulley system using a little ATV winch raises and lowers the rack for easy access to the bikes.

It’s currently powered off a 12V motorcycle battery, which he plans to add a trickle charger to — that being said, it has lasted for more than 6 months and he still hasn’t had to recharge it! He threw together a little control circuit featuring two relays (up and down) and a 2 channel remote control. The motor is a little slow, but it does the job quite well. If he wanted to get it going a bit faster, he could probably double the voltage to allow for a quicker movement — since it’s only on for short periods of time it should be okay. Seeing hacks like this has us wondering just how many winch-driven extras you could build into a single abode.

Check out the following video of it in action!

Continue reading “DIY Ceiling Rack Keeps Your Bikes Out Of The Way”

A Cheap Honeycomb Table Replacement For Your Laser

FH6KXVYHRWN86BN.LARGE

CO2 lasers make use of a honeycomb table which allows you to support parts you are cutting — without cutting into the bed too much. Unfortunately they are a consumable part, so they will eventually wear out, and they aren’t that cheap. [Claptrap] came up with an excellent alternative.

A few months ago, his radiator blew in his station wagon, and it had to be replaced. He was about to throw it out when he realized the similarity of the radiators cooling fins, to that of his honeycomb table… He cut it down to size, pressure washed it (though he notes you should probably wash it first before cutting) and put it in place. It works great!

The only caveat we have is that you should probably flush the radiator with a water pump first — you don’t want to be heating up any residual radiator fluid inside the radiator channels!

Continue reading “A Cheap Honeycomb Table Replacement For Your Laser”

FLUX 1440: A Highly Impractical But Awesome Clock

One our tipsters just sent us this great project — it’s a unique style of clock that we haven’t seen before. It was completed as part of what we think was a post-graduate program by [Felix Vorreiter]. This is FLUX 1440 (translated).

It uses 1200 meters of marked rope that is fed into the clock and strung between various pulleys and gears. Every second, the rope is moved 1.3cm. Every 57 seconds, the time is readable across the strands of rope — but only for 3 seconds. After that everything goes “back into the river”, a metaphor for chaos.

The explanation behind it is in German, but we’ve tried to piece together a general statement about the meaning behind it. Of course, we’d love if one of our German readers could provide a better translation!

FLUX 1440 displays time as a spatial dimension and counts the length of a day using a long segmented rope. The length of each minute is felt physically, as the viewer must wait as the shapes change until the current time reveals itself from the chaos of the markings.

Stick around for an extremely well produced video demonstrating it — it’s also in German, but we think you’ll be able to piece together the meaning.

Continue reading “FLUX 1440: A Highly Impractical But Awesome Clock”

Listening To A Smart Scale

[Saulius] couldn’t find a cost-effective wireless scale that did what he wanted, so he reverse engineered the communication protocol for an off the shelf model to get weight data himself.

[Saulius] bought a cheap Maxim 29-66SH scale that uses infra-red to communicate to a detachable digital readout. Using the USB IR toy, [Saulius] intercepted the messages that were broadcast. After a little reverse engineering and with the help of some Python scripts, he soon discovered the protocol his scale was using to encode weight messages.

[Saulius] went on to write a little web app using JavaScript, SocketIO and Tornado, a light weight Python web server. By connecting to the tiny web server that’s interfaced with a Python script listening for the scales messages received from the USB IR toy, [Saulius] was able to see his weight displayed on his smart phone through a web browser.

Since all the communication is through IR, there is no need to do any invasion of the scale as the receiver can be placed anywhere in line of sight from the transmitter on the scale itself.

Check out the demo video for the whole thing in action. If patching into the scale isn’t hard enough, you should just build one from scratch.

Continue reading “Listening To A Smart Scale”