Logic Noise: Taming The Wild Shift Register

One of the best things about DIY synth building is that you can create devices that just don’t exist in the commercial marketplace. In this session, we’ll build a looper / sequencer the likes of which you may have never seen. And it’s groovy. Today we’ll also get back a little closer to the soul of the series. In this session, nothing is analog — this is pure Logic Noise.

The shift register is the centerpiece chip this session, and a great device in its own right. We’ve got a lot of ground to cover, so watch the teaser video and then let’s get going.

Continue reading “Logic Noise: Taming The Wild Shift Register”

Logic Noise: Sequencing In Silicon

In this session of Logic Noise, we’ll combine a bunch of the modules we’ve made so far into an autonomous machine noise box. OK, at least we’ll start to sequence some of these sounds.

A sequencer is at the heart of any drum box and the centerpiece of any “serious” modular synthesizer. Why? Because you just can’t tweak all those knobs and play notes and dance around at the same time. Or at least we can’t. So you gotta automate. Previously we did it with switches. This time we do it with logic pulses.

Continue reading “Logic Noise: Sequencing In Silicon”

Logic Noise: More CMOS Cowbell!

Logic Noise is an exploration of building raw synthesizers with CMOS logic chips. This session, we’ll tackle things like bells, gongs, cymbals and yes, cowbells that have a high degree of non-harmonically related content in them.

Metallic Sounds: The XOR

I use the term “Non-harmonic” in the sense that the frequencies that compose the sound aren’t even integer multiples of some fundamental pitch as is the case with a guitar string or even our square waves. To make these metallic sounds, we’re going to need to mess things up a little bit, and the logic function we’re introducing today to do it is the exclusive-or (XOR).

Continue reading “Logic Noise: More CMOS Cowbell!”

Logic Noise: Filters And Drums

Filters and Drums

Logic Noise is an exploration of building raw synthesizers with CMOS logic chips. This session, we continue to abuse the 4069UB as an amplifier. We’ll turn the simple unity-gain buffer of last session into a single-pole active lowpass filter with a single part. (Spoiler: it’s a capacitor.)

While totally useful, this simple filter is a bit boring and difficult to make dynamic. So we’ll look into an entirely different filter, the Twin-T notch filter, that turns out to be sharp enough to build a sine-wave oscillator on, and tweakable enough that we’ll make a damped-oscillator drum sound out of it.

Here’s a quick demo of where we’re heading. Read on to see how we get there.

Continue reading “Logic Noise: Filters And Drums”

Logic Noise: Sawing Away With Analog Waveforms

Today we’ll take a journey into less noisy noise, and leave behind the comfortable digital world that we’ve been living in. The payoff? Smoother sounds, because today we start our trip into analog.

If you remember back to our first session when I was explaining how the basic oscillator loads and unloads a capacitor, triggering the output high or low when it crosses two different thresholds. At the time, we pointed out that there was a triangle waveform being generated, but that you’d have a hard time amplifying it without buffering. Today we buffer, and get that triangle wave out to our amplifiers.

triangle_square

But as long as we’re amplifying, we might as well overdrive the amps and head off to the land of distortion. We’ll do just that and build up a triangle-wave oscillator that can morph into a square wave, passing through a rounded-over kinda square wave along the way. The triangle sounds nice and mellow, and the square wave sounds bright and noisy. (You should be used to them by now…) And we get everything in between.

And while we’re at it, we might as well turn the triangle wave into a sawtooth for that nice buzzy-bass sound. Then we can turn the fat sawtooth into a much brighter sounding pulse wave, a near cousin of the square wave above.

What’s making all this work for us? Some dead-boring amplification with negative feedback, and the (mis-)use of a logic chip to get it. After the break I’ll introduce our Chip of the Day: the 4069UB.

If you somehow missed them, here are the first three installments of Logic Noise:

Continue reading “Logic Noise: Sawing Away With Analog Waveforms”

Logic Noise: The Switching Sequencer Has The Beat

Logic Noise is all about using logic circuits to make sounds. Preferably sound that will be enjoyable to hear and useful for making music. This week, we’ll be scratching the surface of one of my favorite chips to use and abuse for, well, nearly anything: the 4051 8-way analog switch. As the name suggests, you can hook up eight inputs and select one from among them to be connected up to the output. (Alternatively, you can send a single input to one of eight destinations, but we won’t be doing that here.)

Why is this cool? Well, imagine that you wanted to make our oscillator play eight notes. If you worked through our first installment, you built an abrasive-sounding but versatile oscillator. I had you tapping manually on eight different resistors or turning a potentiometer to eight different positions. This week, we’ll be letting the 4051 take over some of the controls, leaving us to do the more advanced knob twiddling.

Continue reading “Logic Noise: The Switching Sequencer Has The Beat”

Logic Noise: 8-bits Of Glorious Sounds

Logic Noise is all about using analog circuits to make sounds. Preferably sound that will be enjoyable to hear and useful for making music. Now, the difference between music, sound, and noise is certainly in the ear of the behearer, but you must admit that last installment’s simple square wave lacked a little something. (Although the sync oscillator circuit extension was kinda cool.)

This week, we’ll take our single wimpy square-wave oscillator and beef it up by adding a bunch of sub-octaves to the mix. And we’ll do it using a chip that’ll be really useful for us in the future as well: the 4040 binary counter chip.

Counters (binary or decimal) are going to be fertile ground for more musical noise experiments. Why so? Because octaves are just doublings or halvings of frequencies, and because a lot of rhythmic patterns have factors of two underlying them.  Just think about the most basic drum pattern you know: bass drum on the one, snare on one and three, and hi-hats on one, two, three, and four. Each different instrument fires off twice as frequently as the one before it.

But for now, enough blabber. We’ve got an oscillator to build.

Continue reading “Logic Noise: 8-bits Of Glorious Sounds”