Why NASA Only Needs Pi To So Many Decimal Places

If you’re new to the world of circular math, you might be content with referring to pi as 3.14. If you’re getting a little more busy with geometry, science, or engineering, you might have tacked on a few extra decimal places in your usual calculations. But what about the big dogs? How many decimal places do NASA use?

NASA doesn’t need this many digits. It’s likely you don’t either. Image credits: NASA/JPL-Caltech

Thankfully, the US space agency has been kind enough to answer that question. For the highest precision calculations, which are used for interplanetary navigation, NASA uses 3.141592653589793 — that’s fifteen decimal places.

The reason why is quite simple, going into any greater precision is unnecessary. The article demonstrates this by calculating the circumference of a circle with a radius equal to the distance between Earth and our most distant spacecraft, Voyager 1. Using the formula C=2pir with fifteen decimal places of pi, you’d only be off on the true circumference of the circle by a centimeter or so. On solar scales, there’s no need to go further.

Ultimately, though, you can calculate pi to a much greater precision. We’ve seen it done to 10 trillion digits, an effort which flirts with the latest Marvel movies for the title of pure irrelevance. If you’ve done it better or faster, don’t hesitate to let us know!

Hackaday Links Column Banner

Hackaday Links: December 15, 2024

It looks like we won’t have Cruise to kick around in this space anymore with the news that General Motors is pulling the plug on its woe-beset robotaxi project. Cruise, which GM acquired in 2016, fielded autonomous vehicles in various test markets, but the fleet racked up enough high-profile mishaps (first item) for California regulators to shut down test programs in the state last year. The inevitable layoffs ensued, and GM is now killing off its efforts to build robotaxis to concentrate on incorporating the Cruise technology into its “Super Cruise” suite of driver-assistance features for its full line of cars and trucks. We feel like this might be a tacit admission that surmounting the problems of fully autonomous driving is just too hard a nut to crack profitably with current technology, since Super Cruise uses eye-tracking cameras to make sure the driver is paying attention to the road ahead when automation features are engaged. Basically, GM is admitting there still needs to be meat in the seat, at least for now.

Continue reading “Hackaday Links: December 15, 2024”

Apollo-era PCB Reverse Engineering To KiCad

Earlier this year [Skyhawkson] got ahold of an Apollo-era printed circuit board which he believes was used in a NASA test stand. He took high quality photos of both sides of the board and superimposed them atop each other. After digging into a few obsolete parts from the 1960s, he was able to trace out the connections. I ran across the project just after making schematics for the Supercon badge and petal matrix. Being on a roll, I decided to take [Skyhawkson]’s work as a starting point and create KiCad schematics. Hopefully we can figure out what this circuit board does along the way.

The board is pretty simple:

  • approximately 6.5 x 4.5 inches
  • 22 circuit edge connector 0.156 in pitch
  • 31 ea two-terminal parts ( resistors, diodes )
  • 3 ea trimmer potentiometers
  • 7 ea transistors
  • parts arranged in 4 columns

Continue reading “Apollo-era PCB Reverse Engineering To KiCad”

Supercon 2023: Restoring The Apollo Guidance Computer

Humans first visited the Moon in 1969.  The last time we went was 1972, over 50 years ago. Back then, astronauts in the Apollo program made their journeys in spacecraft that relied on remarkably basic electronics that are totally unsophisticated compared to what you might find in an expensive blender or fridge these days. Core among them was the Apollo Guidance Computer, charged with keeping the craft on target as it travelled to its destination and back again.

Marc Verdiell, also known as CuriousMarc, is a bit of a dab hand at restoring old vintage electronics. Thus, when it came time to restore one of these rare and storied guidance computers, he was ready and willing to take on the task. Even better, he came to the 2023 Hackaday Supercon to tell us how it all went down!

Continue reading “Supercon 2023: Restoring The Apollo Guidance Computer”

Voyager 1 Fault Forces Switch To S-Band

We hate to admit it, but whenever we see an article about either Voyager spacecraft, our thoughts immediately turn to worst-case scenarios. One of these days, we’ll be forced to write obituaries for the plucky interstellar travelers, but today is not that day, even with news of yet another issue aboard Voyager 1 that threatens its ability to communicate with Earth.

According to NASA, the current problem began on October 16 when controllers sent a command to turn on one of the spacecraft’s heaters. Voyager 1, nearly a light-day distant from Earth, failed to respond as expected 46 hours later. After some searching, controllers picked up the spacecraft’s X-band downlink signal but at a much lower power than expected. This indicated that the spacecraft had gone into fault protection mode, likely in response to the command to turn on the heater. A day later, Voyager 1 stopped communicating altogether, suggesting that further fault protection trips disabled the powerful X-band transmitter and switched to the lower-powered S-band downlink.

This was potentially mission-ending; the S-band downlink had last been used in 1981 when the probe was still well within the confines of the solar system, and the fear was that the Deep Space Network would not be able to find the weak signal. But find it they did, and on October 22 they sent a command to confirm S-band communications. At this point, controllers can still receive engineering data and command the craft, but it remains to be seen what can be done to restore full communications. They haven’t tried to turn the X-band transmitter back on yet, wisely preferring to further evaluate what caused the fault protection error that kicked this whole thing off before committing to a step like that.

Following Voyager news these days feels a little morbid, like a death watch on an aging celebrity. Here’s hoping that this story turns out to have a happy ending and that we can push the inevitable off for another few years. While we wait, if you want to know a little more about the Voyager comms system, we’ve got a deep dive that should get you going.

Thanks to [Mark Stevens] for the tip.

Supercon 2023: Receiving Microwave Signals From Deep-Space Probes

Here’s the thing about radio signals. There is wild and interesting stuff just getting beamed around all over the place. Phrased another way, there are beautiful signals everywhere for those with ears to listen. We go about our lives oblivious to most of them, but some dedicate their time to teasing out and capturing these transmissions.

David Prutchi is one such person. He’s a ham radio enthusiast that dabbles in receiving microwave signals sent from probes in deep space. What’s even better is that he came down to Supercon 2023 to tell us all about how it’s done!

Continue reading “Supercon 2023: Receiving Microwave Signals From Deep-Space Probes”

Hackaday Links Column Banner

Hackaday Links: September 29, 2024

There was movement in the “AM Radio in Every Vehicle Act” last week, with the bill advancing out of the US House of Representatives Energy and Commerce Committee and heading to a full floor vote. For those not playing along at home, auto manufacturers have been making moves toward deleting AM radios from cars because they’re too sensitive to all the RF interference generated by modern vehicles. The trouble with that is that the government has spent a lot of effort on making AM broadcasters the centerpiece of a robust and survivable emergency communications system that reaches 90% of the US population.

The bill would require cars and trucks manufactured or sold in the US to be equipped to receive AM broadcasts without further fees or subscriptions, and seems to enjoy bipartisan support in both the House and the Senate. Critics of the bill will likely point out that while the AM broadcast system is a fantastic resource for emergency communications, if nobody is listening to it when an event happens, what’s the point? That’s fair, but short-sighted; emergency communications isn’t just about warning people that something is going to happen, but coordinating the response after the fact. We imagine Hurricane Helene’s path of devastation from Florida to Pennsylvania this week and the subsequent emergency response might bring that fact into focus a bit.

Continue reading “Hackaday Links: September 29, 2024”