Two men in black shirts stand between a white and a blue exercise bike sitting on a table in front of them. The exercise bikes have black drums slightly larger than a coffee can affixed to the front of the bike which houses the shredding mechanism. In the background is a "Precious Plastics Torino" circular logo.

Getting Shredded Plastic…and Legs

While electric motors have taken the drudgery out of many tasks, human power has its advantages. [Precious Plastic Torino] has developed a human-powered plastic shredder for those times when an electric motor just won’t do.

Designed primarily for educational purposes at venues where electricity can be difficult to source, but also useful for off-grid environments, this exercise bike-based shredder can take small pieces of plastic and shred them into tiny pieces suitable for use with any of the other machines in the Precious Plastics ecosystem like their injection molding machine. As with all [Precious Plastics] projects, the files are will be open source; however, there is a six month exclusivity period for Patreon subscribers to help fund development efforts.

The build is relatively simple: take an old exercise bike, remove the unnecessary bits, and run the chain up to drive a shredding mechanism mounted on the front of the bike. We think they should’ve kept the flywheel to help keep the momentum going while shredding but can’t fault them for wanting to keep the prototype as simple as possible. Maybe the next step is getting these in spin classes around the country so people can get their exercise and help recycle in their community at the same time!

If this shredder doesn’t suit your fancy, maybe recycle your plastic with SHREDII or this other DIY effort. If you’d rather generate electricity on your exercise bike, then try building this bike generator.

Continue reading “Getting Shredded Plastic…and Legs”

A man with dark skin in a red shirt and khaki shorts sits in a chair. His left leg has a prosthetic below the knee. The upper half of the prosthethic is an off white plastic socket with flecks of different off white plastic throughout hinting at the recycled nature of the plastic. The lower half is a metal tube attached to an artificial foot in black sandals.

Precious Plastic Prosthetics

Plastic waste is a major problem, but what if you could turn the world’s trash into treasure? [Yayasan Kaki Kita Sukasada (YKKS)] in Indonesia is doing this by using recycled plastic to make prosthetic legs.

Polypropylene source material is shredded and formed into a sheet which is molded into the required shape for the socket. A layer of cloth and foam is used to cushion the interface between the patient and the socket itself. Using waste plastic to make parts for the prosthetics lowers the price for patients as well as helps to keep this material out of the landfill.

What makes this project really exciting is that [YKKS] employs disabled people who develop the prosthetics and also trains patients on how to maintain and repair their prosthetics with easily sourced tools and materials. With some medical device companies abandoning their devices, this is certainly a welcome difference.

We’ve previously covered the Precious Plastic machines used to make the plastic sheets and the organization’s developments at small scale injection molding.

Continue reading “Precious Plastic Prosthetics”

Hackaday Prize 2022: Recycled Plastic Skateboard Decks Demonstrate Small-Scale Injection Molding

Injection molding is usually focused on high-volume production, but that doesn’t always need to be the case. The Recycled Plastic Skateboard Deck project centers on the use of injection molding for a relatively low-volume production line using open-source tooling.

RPSD is part of the Precious Plastics ecosystem and uses the existing and open-source shredder and extruder to turn locally-sourced plastic waste into melted plastic. The core of the tooling is in the aluminum CNC-machined top, bottom, and edge mold sections bolted to a thick steel support structure that give the skateboard deck its shape. The edge section defines the deck’s perimeter, and 64 cartridge heaters are inserted into it to bring the mold up to temperature. The mold is mounted on a scissor lift mechanism to allow it to be aligned with the extruder, and temperature control electronics are housed in a laser-cut metal enclosure, which is bolted to the base of the mold structure.

To be clear, this is not a cheap way to make a couple of skateboard decks, but rather a way for small shops to do injection molded decks in-house. At ~$7500 for the components of this relatively large mold, excluding the extruder, you’d still have to sell quite a few decks to make it economically viable.

Although small-scale injection molding has become a lot more accessible, the cost of machined metal molds will remain high for the foreseeable future. However, if you only need small, flexible parts, you could probably do it for under $50 using 3D printed molds and silicone.

Continue reading “Hackaday Prize 2022: Recycled Plastic Skateboard Decks Demonstrate Small-Scale Injection Molding”

Injection Molding IPhone Cases From Trash

We imagine you’ve heard this already, but waste plastic is a problem for the environment. We wrap nearly everything we buy, eat, or drink in plastic packaging, and yet very little of it ends up getting recycled. Worse, it doesn’t take a huge industrial process to melt down a lot of this plastic and reuse it, you can do it at home if you were so inclined. So why aren’t there more localized projects to turn all this plastic trash into usable items?

That the question that [Precious Plastic] asks, and by providing a centralized resource for individuals and communities looking to get into the plastic recycling game, they hope to put a dent in the worldwide plastic crisis. One of their latest projects is showing how plastic trash can be turned into functional iPhone cases with small-scale injection molding.

Pushing plastic into the mold

The video after the break goes into intricate detail about the process involved in creating the 3D CAD files necessary to make the injection molds. Even if you don’t plan on recycling milk jugs at home, the information and tips covered in the video are extremely helpful if you’ve ever contemplated having something injection molded. The video even demonstrates a neat feature in SolidWorks that lets you simulate how molten plastic will move through your mold to help check for problem areas.

Once you’ve designed your mold on the computer, you need to turn it into a physical object. If you’ve got a CNC capable of milling aluminum then you’re all set, but if not, you’ll need to outsource it. [Precious Plastic] found somebody to mill the molds through 3DHubs, though they mention in the video that asking around at local machine shops isn’t a bad idea either.

With the mold completed, all that’s left is to bolt the two sides together and inject the liquid plastic. Here [Precious Plastic] shows off a rather interesting approach where they attach the mold to a contraption that allows them to inject plastic with human power. Probably not something you’d want to do if you’re trying to make thousands of these cases, but it does show that you don’t necessarily need a high tech production facility to make good-looking injection molded parts.

This project reminds us of the tiles made of HDPE plastic with nothing more exotic than what you’d find in the average kitchen. Projects like these really drive home the idea that with the right hardware individuals can turn trash into usable products.

Continue reading “Injection Molding IPhone Cases From Trash”