A Deep Dive Into The Sterzo Steering Plate

Pedaling in place isn’t the most exciting pastime, so it’s no surprise that modern technology is being used to make the in-home biking experience a bit more interactive. With a stand on the rear wheel providing resistance, and a movable steering plate under the front to read the handlebar angle, you can now use your standard bike as the “controller” in a virtual environment provided by software such as Zwift.

Paving the way towards a DIY Sterzo clone

[Keith Wakeham] wanted to take a closer look at how Zwift communicated with his Sterzo steering device, and it turned into a pretty epic bout of exploration and reverse engineering. As the video after the break shows, he didn’t just go from sniffing the device’s proprietary Bluetooth Low Energy (BLE) communications protocol to figuring out how to emulate it in software so you could roll your own Zwift peripheral. He also tore the device apart, pulled the firmware from its microcontroller, and postulated how you could build your own low-cost clone device that would work with the existing software.

Even if you have absolutely zero interest in virtual biking, the video [Keith] has put together for this project is really a must watch. Have you ever wanted to sniff and reverse engineer BLE communications? Looking for a real-world example of pulling the firmware off of a consumer device? Maybe in the market for some tips on how to identify unknown ICs on a board? All of that, and quite a bit more, is covered in this nearly hour long hacking tour de force.

On the other hand, if you are interested in adding your own hardware to Zwift, then this look at getting an unsupported stationary bike working with it should be useful.

Continue reading “A Deep Dive Into The Sterzo Steering Plate”

Hackaday Podcast 079: Wobble Sphere, Pixelflut, Skeeter Traps, And Tracing Apps

Hackaday editors Mike Szczys and Elliot Williams gaze upon the most eye-popping projects from the past week. Who would have known that springy doorstops could be so artistic? Speaking of art, what happens if you give everyone on the network the chance to collectively paint using pixels? There as better way to catch a rat, and a dubious way to lure mosquitoes. We scratch our heads at sending code to the arctic, and Elliot takes a deep look at the contact tracing apps developed and in use throughout Europe.

Take a look at the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Direct download (~65 MB)

Places to follow Hackaday podcasts:

Continue reading “Hackaday Podcast 079: Wobble Sphere, Pixelflut, Skeeter Traps, And Tracing Apps”

Shed Pounds And Inches While Binge Watching Netflix

Feel like breaking out of your streaming-induced vegetative state but can’t seem to break the binge-watching cycle? Maybe you’re a candidate for this exercise bike that controls how much Netflix you watch.

The concept behind [Roboro]’s anti-couch potato build is simple — just keep pedaling and you get to keep watching. The details are pretty simple too and start with an Arduino monitoring the signal coming from a jack thoughtfully provided by the manufacturer of his exercise bike. The frequency of the square wave is translated into a speed which a Python script on a PC reads over USB. Once a Netflix stream is started, dropping below the user-defined speed pauses the movie. The video below shows it doing its thing.

Improvements readily spring to mind, like adding a speed buffer so that pedaling faster lets you bank some streaming time and earn a rest. Maybe it could somehow integrate with these Netflix-enabled socks, or even with the Netflix and Chill button. But those sort of defeat the purpose a bit.

Continue reading “Shed Pounds And Inches While Binge Watching Netflix”

Adding A Heart Rate Monitor To Your Exercise Equipment

This is the readout which [Remick] added to his stationary bicycle. It displays heart rate, calories burned, and a few other items to help motivate his workout routine.

Back when he was ordering a TI Chronos watch he also picked up a heart rate chest strap and receiver. The receiver can be read using a UART, making it easy to interface with the ATmega328 which drives the system. The screen is a graphic LCD, which gave him a lot of control on how to organize the displayed data. Three buttons on the side operate the menu system into which a user can enter sex, age, and weight information. This is used to calculate the calories burned and the percentage of maximum heart rate. The three readouts to the right are for time spent in each workout zone (fat burning, fitness, or performance). The final product looks great because of the PCB he etched and the case he housed it in.

Easy Workout Logging With Ethernet-enabled Exercise Bike

It will be easy to keep your exercise routine on track if you don’t have to do anything at all to log your workouts. [Reefab] developed this add-on hardware for his exercise bike that automatically logs his workout on the Internet.

He’s using RunKeeper to store and display the workout data. They offer a token-based API which [Reefab] implemented in his Arduino sketch. The hardware to grab data from the exercise bike is quite simple to set up. A rare-earth magnet was added to the fly-wheel with a reed switch positioned next it in order to measure the number and speed of rotations. This is exactly how a consumer bicycle computer works, needing just one accurate measurement corresponding to how far the bike travels with each revolution of that wheel.

In addition to the networked-logging feature [Reefab] included a character display so you can follow your speed and distance data during the workout.

Pushing Chest Strap Heart Rate To A Stock Exerciser Display

This hack came out so well that [Levent] wishes he had tried it years ago. When exercising he wears a Polar heart rate monitor which sends data from a chest strap to his wristwatch. But his exercise bike also has a heart rate readout that depends on your hands touching metal contacts on the handlebars. He set out to see if he could patch the chest strap data into the exercise bike LCD display.

The first part of the hack is really simple. As we’ve seen several times before, you can buy a receiver module which grabs data from the chest strap. Now it was a matter of patching the data from this receiver into the Schwinn 213 recumbent exercise bike. [Levent] pulled out the PCB and located the small daughterboard that is responsible for the hand grip heart rate. With careful study he was able to identify the pinout. There are two data lines. One is responsible for the heart rate detected signal, the other pushes the actual heart rate data. On a hunch he hooked a signal generator up to the latter and discovered that all it takes is a square wave.

The rest is pretty straight forward. Check out the proof in his video after the break. Continue reading “Pushing Chest Strap Heart Rate To A Stock Exerciser Display”

Lose The Beer Belly By Brewing Beer

If you’re milling your own grains for that next batch of beer you might be able to melt all of those extra calories away while you’re at it. [Eucherboy1] repurposed an unused exercise bike to power his grain mill. The propane tank is serving as a weight to hold the base of the mill in place; it’ll be used later when boiling the wort. A belt transfers power from the bike to a wheel replacing the hand crank on the mill. Check out the video after the break to see [Euchreboy1] working up a sweat. We think there’s much room for improving the gear ratio of the setup. Or he can just man up and push through the pain.

We’ve gotten used to seeing ways to power a bicycle, like using wood-fired steam, or even by incorporating a chainsaw. But the hacks that use a bike as a power source are a bit less common. Our local hackerspace made a bicycle blender a while back. Got any projects of your own that are bike powered? Send them our way!

Continue reading “Lose The Beer Belly By Brewing Beer”