Engine Data Displayed Live On Dash

In the auto world, there are lots of overarching standards that all automakers comply with. There are also lots of proprietary technologies that each automaker creates and uses for its own benefit. [Shehriyar Qureshi] has recently been diving into Suzuki’s Serial Data Line standard, and has created a digital dash using the data gained.

The project started with Python-based scanner code designed to decode Suzuki’s SDL protocol. Armed with the ability to read the protocol, [Shehriyar] wanted to be able to do so without having to haul a laptop around in the car. Thus, the project was ported to Rust, or “oxidized” if you will.

More after the break…

Continue reading “Engine Data Displayed Live On Dash”

Unlocking The Potential Of A No-Name Handheld Game

The rise of inexpensive yet relatively powerful electronics has enabled a huge array of computing options that would have been unheard of even two decades ago. A handheld gaming PC with hours of battery life, for example, would have been impossible or extremely expensive until recently. But this revolution has also enabled a swath of inexpensive but low-quality knockoff consoles, often running unlicensed games, that might not even reach the low bar of quality set by their sellers. [Jorisclayton] was able to modify one of these to live up to its original promises.

This Ultimate Brick Game, as it is called, originally didn’t even boast the number of games, unlicensed or otherwise, that it claimed to. [Jorisclayton] removed almost all of the internals from this small handheld to help it live up to this original claim. It boasts a Raspberry Pi Zero 2W now as well as a TFT screen and has a number of other improvements including Bluetooth support for external controllers and upgraded audio. A second console was used for donor parts, and some case mods were made as well to accommodate a few extra buttons missing on the original console.

Right now the project is in a prototype phase, as [Jorisclayton] is hoping to use the donor case to build a more refined version of this handheld console in the future. Until then, this first edition upgrade of the original console can run RetroPie, which means it can run most games up through the Nintendo 64 era. RetroPie enables a ton of emulation for old video games including arcade games of the past. This small arcade cabinet uses that software to bring back a bit of nostalgia for the arcade era.

Quasi-Quantifying Qubits For 100 Quid

As part of his multi-year project to build a quantum computer, hacakday.io poster [skywo1f] has shared with us his most recent accomplishment — a Nuclear Magnetic Resonance Spectrometer, which he built for less than $100.

The NMR spectrometer is designed to disturb protons, which naturally line up according to the Earth’s magnetic field, using an electric coil. Once disturbed, the protons nutate (a fancy physics word for wobble), and flip quantum spin states. [skywo1f]’s NMR device can detect these spin state changes, as he demonstrates with a series of control experiments designed to eliminate sources of false positives (which can be annoyingly prevalent in experimental physics). His newest experimental device includes a number of improvements over previous iterations, including proper shielding, quieter power topology, and better coil winding in the core of the device. Everything was assembled with cost in mind, while remaining sensitive enough to conduct experiments — the whole thing is even driven by a Raspberry Pi Pico.

Here at Hackaday, we love to see experiments that should be happening in million-dollar laboratories chugging along on kitchen tables, like this magnetohydrodynamic drive system or some good old-fashioned PCB etching. [skywo1f] doesn’t seem to be running any quantum calculations yet, but the NMR device is an important building block in one flavor of quantum computer, so we’re excited to see where he takes his work next.

Lit up coffee table

Smart Coffee Table To Guide Your Commute

One of the simple pleasures of life is enjoying a drive to work… only to get stuck in traffic that you could’ve known about if you just checked before your daily commute. Who are we kidding? There’s almost nothing worse. [Michael Rechtin] saw this as a great opportunity to spruce up his living room with something practical, a coffee table that serves as a traffic map of Cincinnati.

The table itself is fairly standard with mitered joints at the corners and coated in polyurethane. Bolt on a few legs, and you’ve got a coffee table. But the fun comes with the fancy design on top. A CNC-cut map of Cincinnati is laid out under a sheet of glass. Roads and rivers are painted for a nice touch.

Of course, none of the woodcraft is what gets the attention. This is where the LED light show comes in. On top of the map resides an animated display of either road conditions or the other five pre-programmed animations. The animations include color-coded highways or the good ole’ gamer RGB. To control all of the topographic goodness, a Raspberry Pi is included with some power regulation underneath the table. Every minute, the Pi is able to grab live traffic data from the cloud to display on top.

A looker, this project shows how our hacking fun can be integrated directly into our everyday life in more subtle ways. When we want to decorate ourselves, however, we might want to turn to more personal fare. Check out this miniature liquid simulation pendant for some more everyday design.

Continue reading “Smart Coffee Table To Guide Your Commute”

Super8 Camera Brought To The Modern World

Certain styles of photography or videography immediately evoke an era. Black-and-white movies of flappers in bob cuts put us right in the roaring 20s, while a soft-focused, pastel heavy image with men in suits with narrow ties immediately ties us to the 60s. Similarly, a film shot at home with a Super 8 camera, with its coarse grain, punchy colors, and low resolution brings up immediate nostalgia from the 80s. These cameras are not at all uncommon in the modern era, but the cartridges themselves are definitely a bottleneck. [Nico Rahardian Tangara] retrofitted one with some modern technology that still preserves that 80s look.

The camera he’s using here is a Canon 514XL-S that was purchased for only $5, which is a very common price point for these obsolete machines, especially since this one wasn’t working. He removed all of the internal components except for a few necessary for the camera to work as if it still was using film, like the trigger mechanism to allow the camera to record. In the place of tape he’s installed a Raspberry Pi Zero 2W and a Camera Module 3, so this camera can record in high definition while retaining those qualities that make it look as if it’s filmed on an analog medium four decades ago.

[Nico] reports that the camera does faithfully recreate this early era of home video, and we’d agree as well. He’s been using it to document his own family in the present day, but the results he’s getting immediately recall Super 8 home movies from the 80s and early 90s. Raspberry Pis are almost purpose-built for the task of bringing older camera technology into the modern era, and they’re not just limited to video cameras either. This project put one into an SLR camera from a similar era.

Continue reading “Super8 Camera Brought To The Modern World”

Digitally-Converted Leica Gets A 64-Megapixel Upgrade

Leica’s film cameras were hugely popular in the 20th century, and remain so with collectors to this day. [Michael Suguitan] has previously had great success converting his classic Leica into a digital one, and now he’s taken the project even further.

[Michael’s] previous work saw him create a so-called “digital back” for the Leica M2. He fitted the classic camera with a Raspberry Pi Zero and a small imaging sensor to effectively turn it into a digital camera, creating what he called the LeicaMPi. Since then, [Michael] has made a range of upgrades to create what he calls the LeicaM2Pi.

The upgrades start with the image sensor. This time around, instead of using a generic Raspberry Pi camera, he’s gone with the fancier ArduCam OwlSight sensor. Boasting a mighty 64 megapixels, it’s still largely compatible with all the same software tools as the first-party cameras, making it both capable and easy to use. With a  crop factor of 3.7x, the camera’s Voigtlander 12mm lens has a much more useful field of view.

Unlike [Michael’s] previous setup, there was also no need to remove the camera’s IR filter to clear the shutter mechanism. This means the new camera is capable of taking natural color photos during the day.  [Michael] also added a flash this time around, controlled by the GPIOs of the Raspberry Pi Zero. The camera also features a much tidier onboard battery via the PiSugar module, which can be easily recharged with a USB-C cable.

If you’ve ever thought about converting an old-school film camera into a digital shooter, [Michael’s] work might serve as a great jumping off point. We’ve seen it done with DSLRs, before, too! Video after the break.

Continue reading “Digitally-Converted Leica Gets A 64-Megapixel Upgrade”

ZPUI Could Be Your Tiny Embedded GUI

One of the most frustrating things to me is looking at a freshly-flashed and just powered up single board computer. My goal with them is always getting to a shell – installing packages, driving GPIOs, testing my proof of concept code, adjusting the device tree to load peripheral drivers. Before I can do any of that, I need shell access, and getting there can be a real hassle.

Time after time, I’ve struggled trying to get to a shell on an SBC. For best results, you’d want to get yourself a keyboard, monitor, and an Ethernet cable. Don’t have those, or there’s no space to place them? Maybe a UART connection will work for you – unless it’s broken or misconfigured. Check your pinouts twice. Sure, nowadays you can put WiFi credentials into a text file in /boot/ – but good luck figuring out the IP address, or debugging any mistakes you might make formatting the file. Nowadays, Pi 4 and 5 expose a USB gadget connection on the USB-C port, and that helps… unless you’re already powering the Pi from that port. There’s really no shortage of failure modes here.

If you put a Pi on your network and it goes offline, you generally just don’t know what happened unless you reboot it, which can make debugging into a living hell. I’ve dealt with single-board computers mounted above fiberglass lifted ceilings, fleets of Pi boards at workshops I organized, pocket-carried Pi boards, and at some point, I got tired of it all. A hacker-aimed computer is meant to be accessible, not painful.

Continue reading “ZPUI Could Be Your Tiny Embedded GUI”