Turning A Pi Into A PDP

There’s no better way to learn how to program a computer than assembly, and there’s no better way to do assembly than with a bunch of blinkenlights and switches. Therefore, the best way to learn programming is with a PDP-11. It’s a shame these machines are locked up in museums and the garages of very cool people, but you can build your own PDP-11 with a Raspberry Pi and just a few extra components.

[jonatron] built his own simulated version of the PDP-11 with a lot of LEDs, a ton of switches, and a few 16-bit serial to parallel ICs. Of course the coolest part of any blinkenlight simulator are the front panel graphics, and here [jonatron] didn’t skimp. He put those switches and LEDs on a piece of laser cut acrylic with a handsome PDP11 decal. The software comes with a load of compiler warnings and doesn’t run anything except for very simple machine code programs. That’s really all you can do with a bunch of toggle switches and lights, though.

If this project looks familiar, your memory does not deceive you. The PiDP-8/I was an entry in this year’s Hackaday Prize and ended up being one of the top projects in the Best Product category. We ran into [Oscar], the creator of the PiDP-8, a few times this year. The most recent was at the Hackaday SuperConferece where he gave a talk. He’s currently working on a replica of the king of PDPs, the PDP-11/70.

Video below.

Continue reading “Turning A Pi Into A PDP”

Raspberry Pi Communication Via LASER

[Nick Touran] wanted to make two Raspberry Pi’s communicate wirelessly. There are lots of options, but [Nick] used a LASER and a photoresistor, along with Morse code. If you don’t find Morse code fancy enough, you could always refer to it as OOK (on/off keying). The circuit uses a common LASER module and an ordinary photoresistor that varies in resistance based on light. A resistor forms a voltage divider with the photoresistor and an external A/D reads the resulting voltage.

The circuit works, but we couldn’t help but notice a few items. Not all photoresistors are as sensitive to the same light wavelengths, so for the maximum range you’d want to pick a particular photoresistor.  While the analog to digital converter is certainly workable, we couldn’t help but wonder if you couldn’t set up the divider to use the inherent threshold of the Raspberry Pi’s input pins for a simpler circuit. Of course, if you used the same technique with an Arduino, you could use the built-in A/D converter, and the A/D converter is probably easier to get working.

Continue reading “Raspberry Pi Communication Via LASER”

Which SD Card To Use In A Pi?

There is surprising variation in the performance of SD cards. They are not all created equal and the differences can impact the running of your Raspberry Pi, no matter which model. [Jeff Geerling] wondered exactly how different cards would affect system performance. He ran a number of tests on cards ranging from cheap no-names to well-known brand names. The no-name cards fared pretty badly but even among the brand names there is considerable variation.

microsd-cards-all-tested-raspberry-pi

[Matt] over at Raspberry Pi Spy also tested SD cards and found similar differences. Both tested microSD cards. [Jeff’s] tests were solely on the Pi while [Matt’s] were on Windows 7, Ubuntu, and a Pi.

The discussions in the blog about what to measure were as interesting as the actual results. That lead to determining which software tools to use for the measurement. For example, a system doing a lot of small database reads and writes might work better with one SD card while a system storing and then streaming videos might work better with another card. Another interesting result is that the Pi’s data bus greatly limits the access speeds. [Jeff] measured much higher speeds running the same tests using a Mac with a USB dongle. The cards are capable of much more than the Pi can deliver.

[Matt] also checked the capacity of the SD cards. There are a lot of fakes floating around marked with higher capacities than they actually support. Even getting a brand name card may not help since some are counterfeit. So beware: if the price it too good to be true, it very well may be.

Raspberry Pi $2 WiFi Through Epic SDIO Hack

These are the times that we live in: the Raspberry Pi Zero comes out — a full freaking Linux computer on a chip for $5 — and people complain that it doesn’t have this or that. Top place on the list of desiderata is probably a tie between audio out and WiFi connectivity. USB is a solution for both of these, but with one USB port it’s going to be a scarce commodity, so any help is welcome.

Hackaday.io hacker [ajlitt] is looking for a way out of the WiFi bind. His solution? The Raspberry Pi series of chips has a special function on a bunch of the GPIO pins that make it easier to talk to SDIO devices. SDIO is an extension of the SPI-like protocol that’s used with SD memory cards. The idea with SDIO was that you could plug a GPS or something into your PDA’s SD card slot. We don’t have PDAs anymore, but the SDIO spec remains.

[ajlitt] dug up an SDIO driver for the ESP8089 chip, and found that you can liberate the ESP8266’s SPI bus by removing a flash memory chip that’s taking up the SPI lines. Connect the SPI lines on the ESP8266 to the SDIO lines on the Raspberry Pi, and the rest is taken care of by the drivers. “The rest”, by the way, includes bringing the ESP’s processor up, dumping new firmware into it over the SPI/SDIO lines to convince it to act as an SDIO WiFi adapter, and all the rest of the hardware communication stuff that drivers do.

The result is WiFi connectivity without USB, requiring only some reasonably fine-pitch soldering, and unlike this hack you don’t have to worry about USB bus contention. So now you can add a $2 WiFi board to you $5 computer and you’ve still got the USB free. It’s not as fast as a dedicated WiFi dongle, but it gets the job done. Take that, Hackaday’s own [Rud Merriam]!

Thanks [J0z0r] for the tip!

Hackaday Links: December 6, 2015

[Camus] had it all wrong. After a few hundred years of rolling a stone up a mountain, Sisyphus would do what all humans would do: become engrossed in novelty. The stone would never reach the summit, but it could roll off some pretty sweet ramps. That mountain goat that ticked him off a few decades ago? If Sisyphus let go right now, the stone would probably take that goat out. Sisyphus, like all of us, would be consumed in meaningless novelty. One must imagine Sisyphus happy.

The pumpkin spice must flow. It’s the holidays and for a lot of us that means copious amounts of baked goods. How about an edible sandworm? It looks like something close to a cinnamon roll.

This December’s Marie Claire – whatever that is, I have no idea – features haute circuits. These circuit boards are the work of [Saar Drimer] and Boldport, makers of fine circuit board art. We’ve seen his work a number of times featuring squiggly traces and backlit panels. This seems to be the first time Boldport and the entire idea of PCB art has infiltrated the design world. He also does puzzles.

Raspberry Pi cases simply do not look cool. There’s ports coming out everywhere, and plastic really doesn’t look that great. You know what does look great? Walnut. [Karl] made a few of these out of walnut, MDF and solid aluminum. He’s thinking he might bring this to market, you can check out his webzone here.

Self-driving cars being sold right now! That’s an eBay link for a DARPA Grand Challenge vehicle, a heavily modified Isuzu VehiCross loaded up with computers, a laser scanner, camera, and connected to actuators for steering, brake, pedals, and shifter.

A few years ago, a snowboarding company realized they could use YouTube as a marketing device. They made some really cool projects, like a snowboard with battery-powered heaters embedded in the core of the board (yes, it works). There’s only so many different snowboards you can build, so they turned to surfboards. In fact, they turned to cardboard surfboards, and last week they made a cardboard electric guitar in the Fender custom shop. It’s a completely understandable linear progression from A to B to I don’t know what kind of glue they’re using.

Wireless Water Meter Monitor Watches Waste

It’s no secret that hackers like to measure things. Good numbers lead to good decisions, like when to kick your wastrel teenager out of a luxuriously lengthy shower. Hence the creation of this wireless Arduino-based water meter interface.

We’ll stipulate that “wireless” is a bit of a stretch. Creator [David Schneider] chose to split the system into two parts – a magnetometer and an Arduino to sense impulses from the water company meter, and a Raspberry Pi to serve the web interface. The water meter is at the street rather than in his house, so the sensor is wired to the Pi with some telephone cable. But from there the system is wireless.

[David] goes into some good detail on the sensing problem he faced, which relies on detecting the varying magnetic field due to the spinny-bits inside the flowmeter and cleaning up the signal with the Arduino; he also addresses aliasing errors that occur when flow rate approaches the sampling rate of the magnetometer.

We like the fact that there’s a lot of potential to leverage this technique to monitor other processes with rotating magnetic fields. And like this optically coupled gas-meter monitor, it’s not invasive of the utility’s equipment either, which is a plus.

[via reddit]

A Sound And LED-tastic Tricycle Shopping Cart

What do you get when you take a massive number of LEDs and combine them with a shopping cart and a bicycle? An awesome rave-mobile created by [kramerr]. He’s even taking it one step further by making the electronics solar powered.

[Kramerr] controls the LEDs with multiple WS2803 LED drivers. Three PIC18F4550s control the WS2803s over SPI. He devised a neat way of exciting the LEDs from music by using a pair of graphic equalizer display filter chips, MSGEQ7s, to drive the PICs to create patterns. A USB input also allows the PICs to display song titles or other information.

leds and boards

The mechanical design is as impressive as the electronics. The rear half of a bicycle is welded to the frame of the shopping cart with the cart’s handle used for steering. The shopping cart’s rear wheels are replaced by small bicycle wheels.

But [Kramerr] wasn’t done. He built his own solar panel since he couldn’t find one to fit the size requirements. The panel consists of 26 cells connected in series to provide 1A at 13V on a sunny day. A solar charge controller keeps a standard 12v lead acid battery ready to power the tricycle cart.

And there is still more! There is a sound system driven by a Raspberry Pi. The Pi also drives the USB inputs when [Krameer] wants to display song titles or artists instead of the audio patterns.

There are at least four hacks in this project each worthy of applause. [Karmeer] deserves an ovation for doing all of them in one project. If you are looking for less bling and less pedaling may we direct you to this powered, riding shopping cart.

Some rave music and lights via video after the break.

Continue reading “A Sound And LED-tastic Tricycle Shopping Cart”