Bringing Back The Minitel

If you didn’t live in France in the 80s or 90s, it’s likely you missed out on one of the most successful computer networks in existence prior to the modern Internet. Known as Minitel, it was an online service available over existing phone lines that offered a connected computer terminal for users to do most things we associate with the modern world, such as booking travel, viewing news, looking up phone numbers, and plenty of other useful activities. While a lot of the original system was never archived, there are still some efforts to restore some of its original functionality like this MiniMit.

The build requires either an original or a recreation of a Minitel terminal in all its 80s glory, but pairs an ESP32 to support modern network connectivity. The ESP32 interfaces with the Minitel’s DIN socket and provides it with a translation layer between WiFi and the networking type that it would have originally expected to see from the telephone lines. Two of the original developers of Minitel are working on restoring some of the services that would have been available originally as well, which means that the entire system is being redeveloped and not just the original hardware.

We’ve mentioned that this system was first implemented in the 80s, but the surprising thing is that even well after broadband Internet would have been available to most people in France, the Minitel system still had widespread use, not being fully deactivated until 2012. They remain popular as inspiration for other projects as well, like this one which was brought a little more up-to-date with the help of a modern display and Raspberry Pi.

If Not Ethernet…

It is hard to imagine today, but there was a time when there were several competing network technologies. There was Ethernet, of course. But you could also find token ring, DEC Net, EcoNet, and ARCNet. If you’ve never dug into ARCNet, [Retrobytes] has a comprehensive history you can watch that will explain it all.

Like token ring, ARCNet used a token-passing scheme to allow each station on the network to take turns sending data. Unlike token ring and Ethernet, the hardware setup was much less expensive. Along the way, you get a brief history of the Intel 8008 CPU, which, arguably, started the personal computer revolution.

Like most networking products of the day, ARCNet was proprietary. However, by the late 1980s, open standards were the rage, and Ethernet took advantage. Up until Ethernet was able to ride on twisted pairs, however, it was more expensive and less flexible than ARCNet.

The standard used RG-62/U coax and either passive or active hubs in a star configuration. The coax could be up to 2,000 feet away, so very large networks were feasible. It was also possible to share the coax with analog videoconferencing.

Looking back, ARCNet had a lot to recommend it, but we know that Ethernet would win the day. But [Retrobytes] explains what happened and why.

If you missed “old-style Ethernet,” we can show you how it worked. Or, check out EcoNet, which was popular in British schools.

Persistence Pays In TI-99/4A Cassette Tape Data Recovery

In the three or four decades since storing programs on audio cassettes has been relevant, a lot of irreplaceable personal computing history has been lost to the ravages of time and the sub-optimal conditions in the attics and basements where tapes have been stored. Luckily, over that time we’ve developed a lot of tools and techniques that might make it possible to recover some of these ancient treasures. But as [Noel] shows us, recovering data from cassette tapes is a tricky business.

His case study for the video below is a tape from a TI-99/4A that won’t load. A quick look in Audacity at the audio waveform seems to show the problem — an area of severely attenuated signal. Unfortunately, no amount of boosting and filtering did the trick, so [Noel] had to dig a bit deeper. It turns out that the TI tape interface standard, with its redundant data structure, was somewhat to blame for the inability to read this particular tape. As [Noel] explains, each 64-bit data record is recorded to tape twice, along with a header and a checksum. If neither record decodes correctly, then tape playback just stops.

Luckily, someone who had already run into this problem spun up a Windows program to help. CS1er — our guess would be “Ceaser” — takes WAV file input and loads each record, simply flagging the bad ones instead of just bailing out. [Noel] used the program to analyze multiple recordings of the same data and eventually got enough good records to reassemble the original program, a game called Dogfight — or was it Gogfight? Either way, he managed to get most of the data off the tape, and since it was a BASIC program, it was pretty easy to figure out the missing bytes by inspection.

[Noel]’s experience will no doubt be music to the ears of the TI aficionados out there. Of which we’ve seen plenty, from the TI-99 demoscene to running Java on one, and whatever this magnificent thing is.

Continue reading “Persistence Pays In TI-99/4A Cassette Tape Data Recovery”

Crafting Ribbon Cables For Retro Hardware

Building a modern computer is something plenty of us have done, and with various tools available to ensure that essentially the only thing required of the end user is to select parts and have them delivered via one’s favorite (or least expensive) online retailer. Not so with retro hardware, though. While some parts can be found used on reselling sites like eBay, often the only other option is to rebuild parts from scratch. This is sometimes the best option too, as things like ribbon cables age poorly and invisible problems with them can cause knock-on effects that feel like wild goose chases when troubleshooting. Here’s how to build your own ribbon cables for your retro machines.

[Mike] is leading us on this build because he’s been working on an old tower desktop he’s calling Rosetta which he wants to be able to use to host five different floppy disk types and convert files from one type to another. Of course the old hardware and software being used won’t support five floppy disk drives at the same time so he has a few switches involved as well. To get everything buttoned up neatly in the case he’s building his own ribbon cables to save space, especially since with his custom cables he won’t have the extraneous extra connectors that these cables are famous for.

Even though, as [Mike] notes, you can’t really buy these cables directly anymore thanks to the technology’s obsolescence, you can still find the tools and parts you’d need to create them from scratch including the ribbon, connectors, and crimping tools. Even the strain relief for these wide, fragile connectors is available and possible to build into these projects. It ends up cleaning up the build quite nicely, and he won’t be chasing down any gremlins caused by decades-old degraded multi-conductor cables. And, even though [Mike] demonstrated the floppy disk drive cables in this build, ribbon cable can be used for all kinds of things including IDE drive connectors and even GPIO cables for modern electronics projects.

Continue reading “Crafting Ribbon Cables For Retro Hardware”

Magnetic Bubble Memory Brought To Life On Heathkit

There are all kinds of technology that appear through the ages that find immediate success, promise to revolutionize the world, but fade to obscurity almost as quickly. Things like the ZIP disk, RDRAM, the digital compact cassette, or even Nintendo’s VirtualBoy. Going even further back in time [smbaker] is taking a look a bubble memory, a technology that was so fast and cost-effective for its time that it could have been used as “universal” memory, combining storage and random-access memory into a single unit, but eventually other technological developments overshadowed its quirks.

[smbaker] is placing his magnetic bubble memory module to work in a Heathkit H8, an Intel 8080-based microcomputer from the the late 70s. The video goes into great detail on the theory of how these devices used moving “bubbles” of magnetism to store information and how these specific devices work before demonstrating the design and construction of a dedicated support card which hosts the module itself along with all of the necessary circuitry to allow it to communicate with the computer. From there he demonstrates booting the device using the bubble memory and performs several write and read actions using the module as a demonstration.

Eventually other technologies such as solid-state RAM and various hard disk drives caused the obsolescence of this technology, but it did hang on for a bit longer in industrial settings due to its ability to handle high vibrations and mechanical shocks, mostly thanks to the fact that they had no moving parts. Eventually things like Flash memory came around to put the final nail in the coffin for these types of memory modules, though. The Heathkit H8 is still a popular computer for retrocomputing enthusiasts nonetheless, and we’ve seen all kinds of different memory modules put to work in computers like these.

Continue reading “Magnetic Bubble Memory Brought To Life On Heathkit”

Using Excel To Manage A Commodore 64

The “save” icon for plenty of modern computer programs, including Microsoft Office, still looks like a floppy disk, despite the fact that these have been effectively obsolete for well over a decade. As fewer and fewer people recognize what this icon represents, a challenge is growing for retrocomputing enthusiasts that rely on floppy disk technology to load any programs into their machines. For some older computers that often didn’t have hard disk drives at all, like the Commodore 64, it’s one of the few ways to load programs into computer memory. And, rather than maintaining an enormous collection of floppy discs, [RaspberryPioneer] built a way to load programs on a Commodore using Microsoft Excel instead.

The Excel sheet that manages this task uses Visual Basic for Applications (VBA), an event-driven programming language built into Office, to handle the library of applications for the Commodore (or Commodore-compatible clone) including D64, PRG, and T64 files. This also includes details about the software including original cover art and any notes the user needs to make about them. Using VBA, it also communicates to an attached Arduino, which is itself programmed to act as a disk drive for the Commodore. The neceessary configuration needed to interface with the Arduino is handled within the spreadsheet as well. Some additional hardware is needed to interface the Arduino to the Commodore’s communications port but as long as the Arduino is a 5V version and not a 3.3V one, this is fairly straightforward and the code for it can be found on its GitHub project page.

With all of that built right into Excel, and with an Arduino acting as the hard drive, this is one of the easiest ways we’ve seen to manage a large software library for a retrocomputer like the Commodore 64. Of course, emulating disk drives for older machines is not uncommon, but we like that this one can be much more dynamic and simplifies the transfer of files from a modern computer to a functionally obsolete one. One of the things we like about builds like this, or this custom Game Boy cartridge, is how easy it can be to get huge amounts of storage that the original users of these machines could have only dreamed of in their time.

Well Documented Code Helps Revive Decades-Old Commodore Project

In the 1980s, [Mike] was working on his own RPG for the Commodore 64, inspired by dungeon crawlers of the era like Ultima IV and Telengard, both some of his favorites. The mechanics and gameplay were fairly revolutionary for the time, and [Mike] wanted to develop some of these ideas, especially the idea of line-of-sight, even further with his own game. But an illness, a stint in the military, and the rest of life since the 80s got in the way of finishing this project. This always nagged at him, so he finally dug out his decades-old project, dusted out his old Commodore and other antique equipment, and is hoping to finish it by 2024.

Luckily [Mike’s] younger self went to some extremes documenting the project, starting with a map he created which was inspired by Dungeons and Dragons. There are printed notes from a Commodore 64 printer, including all of the assembly instructions, augmented with his handwritten notes to explain how everything worked. He also has handwritten notes, including character set plans, disk sector use plans, menus, player commands, character stats, and equipment, all saved on paper. The early code was written using a machine language monitor since [Mike] didn’t know about the existence of assemblers at the time. Eventually, he discovered them and attempted to rebuild the code on a Commodore 128 and then an Amiga, but never got everything working together. There is some working code still on a floppy disk, but a lot of it doesn’t work together either.

While not quite finished yet, [Mike] has a well-thought-out plan for completing the build, involving aggregating all of the commented source code and doing quarterly sprints from here on out to attempt to get the project finished. We’re all excited to see how this project fares in the future. Beyond the huge scope of this pet project, we’d also suggest that this is an excellent example of thoroughly commenting one’s code to avoid having to solve mysteries or reinvent wheels when revisiting projects months (or decades) later. After all, self-documenting code doesn’t exist.

Continue reading “Well Documented Code Helps Revive Decades-Old Commodore Project”