Industrial Robot Gets Open-Source Upgrade

Industrial robots are shockingly expensive when new, typically only affordable for those running factories of some sort. Once they’ve gone through their life cycle building widgets, they can be purchased for little more than scrap value, which is essentially free compared to their original sticker price. [Excessive Overkill] explains all of this in a video where he purchased one at this stage to try to revive, but it also shows us how to get some more life out of these robots if you can spend some time hunting for spare parts, installing open-source firmware, and also have the space for a robot that weighs well over a thousand kilograms.

This specific robot is a Fanuc R2000ia with six degrees of freedom and a reach of over two meters. Originally the plan was to patch together a system that could send modern gcode to the Fanuc controller, but this was eventually scrapped when [Excessive Overkill] realized the controller that shipped with this robot was for an entirely different machine and would never work. Attempts to find upgraded firmware were frustrated, and after a few other false starts a solution was found to get the robot working again using LinuxCNC and Mesa FPGA cards, which have built-in support for Fanuc devices like this.

More after the break…

Continue reading “Industrial Robot Gets Open-Source Upgrade”

A Guard Bot For Your Home Assistant

While fixed sensors, relays, and cameras can be helpful in monitoring your home, there are still common scenarios you need to physically go and check something. Unfortunately, this is often the case when you’re away from home. To address this challenge, [PriceLessToolkit] created a guardian bot that can be controlled through Home Assistant.

The robot’s body is made from 3D printed components designed to house the various modules neatly. The ESP32 camera module provides WiFi and video capabilities, while the Arduino Pro Mini serves as the bot’s controller. Other peripherals include a light and radar sensor, an LED ring for status display, and a speaker for issuing warnings to potential intruders. The motor controllers are salvaged from two 9-gram servos. The onboard LiPo battery can be charged wirelessly with an integrated charging coil and controller by driving the bot onto a 3D printed dock.

This build is impressive in its design and execution, especially considering how messy it can get when multiple discrete modules are wired together. The rotating caster wheels made from bearings add an elegant touch.

If you’re interested in building your own guard bot, you can find the software, CAD models, and schematics on GitHub. If you’re looking to add other gadgets to your Home Assistant setup, we’ve seen it connect to boilers, blinds, beds and 433 MHz sensors.

Continue reading “A Guard Bot For Your Home Assistant”

Never Stare Down A Robot

There are a few things historically difficult to make a robot do. Stairs, of course, are the obvious problem. But realistic blinking behavior is harder than you might think. At first, it might seem frivolous and simple to have a robot blink, but according to Italian scientists, it is both more important and more difficult than you probably think.

Blinking is a nonverbal cue when humans communicate. The post quotes a Finnish researcher:

While it is often assumed that blinking is just a reflexive physiological function associated with protective functions and ocular lubrication, it also serves an important role in reciprocal interaction.

Continue reading “Never Stare Down A Robot”

Jump Like Mario With This Weighted Wearable

Virtual reality has come a long way in the past decade, with successful commercial offerings for gaming platforms still going strong as well as a number of semi-virtual, or augmented, reality tools that are proving their worth outside of a gaming environment as well. But with all this success they still haven’t quite figured out methods of locomotion that feel natural like walking or running. One research group is leaping to solve one of these issues with JumpMod: a wearable device that enhances the sensation of jumping.

The group, led by [Pedro Lopes] at the University of Chicago, uses a two-kilogram weight worn on the back to help provide the feeling of jumping or falling. By interfacing it with the virtual reality environment, the weight can quickly move up or down its rails when it detects that the wearer is about to commit to an action that it thinks it can enhance. Wearers report feeling like they are jumping much higher, or even smashing into the ground harder. The backpack offers a compact and affordable alternative to the bulky and expensive hardware traditionally used for this purpose.

With builds like these, we would hope the virtual reality worlds that are being created become even more immersive and believable. Of course that means a lot more work into making other methods of movement in the virtual space feel believable (like walking, to start with) but it’s an excellent piece of technology that shows some progress. Augmenting the virtual space doesn’t always need bulky hardware like this, though. Take a “look” at this device which can build a believable virtual reality space using nothing more than a webcam.

Continue reading “Jump Like Mario With This Weighted Wearable”

Air Hockey Solitaire

While air hockey is a fine amusement, it isn’t much fun if you can’t find someone to play against. Unless that is, you build a mini table with a robotic defender. [Vaib], [Nathan], and [Navish] can show you how. There is a video you can see below that shows two players using the table without the robot.

The project takes a bit of woodworking, as you might expect. You also have to drill 576 holes for the air to lift the puck. Some of the components are 3D printed in PETG, too. The automated defense uses a camera and relies on the fact that the puck is the only red thing on the table. A servo moves to intercept the incoming puck and return the shot. We were disappointed the video didn’t show the automated play.

We wondered if they had considered making a pair of the detachable robots and letting them play with each other. If you prefer football, the robot could probably adapt. We’ve seen other robot air hockey contenders, so maybe a better idea would be to build different robots and let them compete for a gold medal.

Continue reading “Air Hockey Solitaire”

Design Files Released For The PR2 Robot

It’s always great fun to build your own robot. Sometimes, though, if you’re doing various projects or research, it’s easier to buy an existing robot and then use it to get down to business. That was very much the role of the Willow Garage PR2, but unfortunately, it’s no longer in production. However, as covered by The Robot Report, the design files have now been released for others to use.

The PR2 was built as an advanced platform with wide-ranging capabilities. It was able to manipulate objects with its 7-degrees-of-freedom end effectors, as well as visualize the real world with a variety of complex sensor packages. Researchers put it to work on a variety of tasks, from playing pool to fetching beers and even folding laundry. The latter one is still considered an unsolved problem that challenges even the best robots.

Rights to the PR2 robot landed in the hands of Clearpath Robotics, after Willow Garage was shut down in 2014. Clearpath is now providing access to the robot’s design files on its website. This includes everything from wiring diagrams and schematics, to assembly drawings, cable specs, and other background details. You’ll have to provide some personal information to get access, but the documentation you desire is all there.

We actually got our first look at the PR2 robot many years ago, way back in 2009. If you decide to build your own from scratch, be sure to hit us up on the tipsline.

Continue reading “Design Files Released For The PR2 Robot”

Foldable PCB Becomes Tiny Rover

Typically, when you’re putting electronics in a robot, you install the various controller PCBs into the robot’s chassis. But what if the PCB itself was the chassis? [Carl Bugeja’s] latest design explores just that idea.

Yes, [Carl] decided to build a tiny robotic rover out of a foldable PCB. This choice was made as using a flexible foldable PCB would allow for the creation of a 3D chassis without the need for bulky connectors joining several boards together. A key part of the design was allowing the structure to unfold easily for serviceability’s sake. To that end, the structure is held together by the bolts that also act as the axles for the rover’s wheels. Even more brilliantly, the wheels are turned by motors built into the very PCB itself. Control is via a PlayStation controller, connected wirelessly to command the robot.

The little bot is surprisingly capable, especially when juiced up with a twin-cell lithium battery. It’s tiny, with minimal ground clearance, so it’s not the best at driving on rough surfaces. Having all-wheel-drive helps, though.

[Carl] specifically credits Altium Designer for making the design possible, thanks to its advanced 3D visualization tools that support foldable PCBs. Video after the break.

Continue reading “Foldable PCB Becomes Tiny Rover”