Santa’s Autonomous Helping Hands Let The Jolly Ol’ Fellow Kick Back This Season

For those skeptical about the feasibility of Santa’s annual delivery schedule, here’s an autonomous piece of the puzzle that will bewilder even the most hard-hearted of non-believers.

The folks over at the Center of Excellence Cognitive Interaction Technology (CITEC) in Germany have whipped together a fantastic demo featuring Santa’s extra pair of helping hands. In the two-and-a-half minute video, the robot executes a suite of impressive autonomous stocking-stuffing maneuvers: from recognizing the open hole in the stocking, to grasping specific candies from the cluster of goodies available.

On the hardware-side, the arms appear to be a KUKA-variant, while on the software-side, the visualizations are being handled by the open source robot software ROS‘ RVIZ tool.

If some of the props in the video look familiar, you’ll find that the researchers at CITEC have already explored some stellar perception, classification, and grasping of related research topics. Who knew this pair of hands would be so jolly to clock some overtime this holiday season? The entire video is set to a crisp computer-voiced jingle that serves as a sneaky summary of their approach to this project.

Now, if only we could set these hands off to do our other dirty work….

Continue reading “Santa’s Autonomous Helping Hands Let The Jolly Ol’ Fellow Kick Back This Season”

Cutting Ribbons With Robots And A Oculus Rift

PR2-GrandOpening

On June 26th, 2014, Clearpath Robotics opened up the doors to their brand new 12,000 square foot robot lair by bringing out a PR2 to cut the ceremonial ribbon and welcome everyone inside. And instead of just programming the ‘locate and destroy’ ribbon sequence, the co-founders opted to use an Oculus Rift to control the robot tearing through the material with flailing arms.

This was accomplished having Jake, the robot, utilize a Kinect 2.0 that fed skeleton tracking data via rosserial_windows, a windows-based set of extension for the Robot Operating System which we heard about in January. The software gathers in a stream of data points each with an X,Y,Z component allowing [Jake] to find himself within a 3D space.Then, the data was collected and published directly into the PR2’s brain. Inject a little python code, and the creature was able to route directions in order to move it’s arms.

Thus, by simply stepping in front of the Kinect 2.0, and putting on the Oculus Rift headset, anyone could teleoperate [Jake] to move around and wave its arms at oncoming ribbons. Once completed, [Jake] would leave the scene, journeying back into the newly created robot lair leaving pieces of nylon and polyester everywhere.

An earlier (un-smoothed) version of the full system can be seen after the break:

Continue reading “Cutting Ribbons With Robots And A Oculus Rift”

Hexapod Robot Terrifies Humans And Wallets

hexapod

[Kevin] brings us Golem, his latest robot project. Golem is crafted not of clay and stone like his namesake, but of T6 Aluminum and Servos. We don’t have a banana for scale, but Golem is big. Not [Jamie Mantzel’s] Giant Robot Project big, but at 2.5 feet (76.2 cm) in diameter and 16 lbs (7.3 Kg), no one is going to call Golem a lightweight. With that kind of mass, standard R/C servos don’t stand much of a chance. [Kevin] pulled out all the stops and picked up Dynamixel MX64 servos for Golem’s legs. Those servos alone propelled the Golem’s costs well beyond the budget of the average hobbyist. Kevin wasn’t done though. He added an Intel NUC motherboard with a fourth generation i5 processor, a 120 Gigabyte solid state drive, and 8 Gigbytes of Ram.  Sensing is handled by gyros, accelerometers, and an on-board compass module. We’re assuming from the lack of a GPS that Golem will mainly see indoor use. We definitely like the mini subwoofer mounted on Golem’s back. Hey, even robots gotta have their tunes.

Golem is currently walking under human control via a Dualshock 3 controller paired via bluetooth. [Kevin’s] goal is to use Golem to learn Robotic Operating System (ROS). He’s already installed ubuntu 13.04 and is ready to go. [Kevin] didn’t mention a vision system, but based on the fact that some of his other robots use the Xtion pro live, we’re hopeful. We can’t wait to see Golem’s first autonomous steps.

Continue reading “Hexapod Robot Terrifies Humans And Wallets”

RIVERWATCH: An Autonomous Surface-Aerial Marsupial Robot Team

cata

Every once in a while we get a tip for a project that really, really, really blows our minds. This is one of them.

It looks like a basic catamaran with a few extra bells and whistles — except it is so much more than that. You’re looking at a fully Autonomous Surface Vehicle, complete with a piggybacking 6-rotor UAV. It’s decked out in cameras, sonar sensors, laser rangefinders, high accuracy GPS-RTK tracking, an IMU, oh, and did we mention the autonomous 6-rotor UAV capable of taking off and landing on it?

It all started out as a simple experiment within ECHORD (the European Clearing House for Open Robotics Development), and since then it has become a fully funded project at UNINOVA, a Centre of Technology and Systems in Portugal.

The purpose of the mind-blowing robot team is to collect data of river environments — think of it as Google Maps 2.0 — which is almost an understatement for what it is capable of.

You seriously have to watch the video after the break.

Continue reading “RIVERWATCH: An Autonomous Surface-Aerial Marsupial Robot Team”

The Robot Operating System (ROS) 101

Ever heard about the Robot Operating System? It’s a BSD-licensed open-source system for controlling robots, from a variety of hardware. Over the years we’ve shared quite a few projects that run ROS, but nothing on how to actually use ROS. Lucky for us, a robotics company called Clearpath Robotics — who use ROS for everything — have decided to graciously share some tips and tricks on how to get started with ROS 101: An Introduction to the Robot Operating System.

The beauty of the ROS system is that it is made up of a series of independent nodes which communicate with each other using a publish/subscribe messaging model. This means the hardware doesn’t matter. You can use different computers, even different architectures. The example [Ilia Baranov] gives is using an Arduino to publish the messages, a laptop subscribed to them, and even an Android phone used to drive the motors — talk about flexibility!

It appears they will be doing a whole series of these 101 posts, so check it out — they’ve already released numéro 2, ROS 101: A Practical Example. It even includes a ready to go Ubuntu disc image with ROS pre-installed to mess around with on VMWare Player!

And to get you inspired for using ROS, check out this Android controlled robot using it! Or how about a ridiculous wheel-chair-turned-creepy-face-tracking-robot?

Android Controlled Robot Extravaganza

We have no idea why, but since we featured Botiful, the Android-powered telepresence robot a few days ago, the tip line has been awash in robot/Android mashups. Here’s a few of the cool ones.

Using an Android as a remote control

[Stef] used a Samsung Galaxy S3 to control an old rc tank. The Android sends accelerometer and gyro data over Bluetooth to an Android where it powers a pair of H-bridges to turn the wheels.

Turning Android into a Robotic Operating System

ROS, or the Robot Operating System, provides a bunch of utilities for any type of robot such as point-cloud mapping to multi-joint arm control. [Lentin] sent in a guide on installing ROS on Android. So far, he can get accelerometer data, stills from the on-board camera, have the robot speak and use the small vibrator motor. Here’s a (somewhat limited) demo of [Lentin] playing with ROS in a terminal.

“Just a quick procrastination project”

Last May, [Josh] wrote in asking if a tread-based robot controlled through Skype would be a cool idea. We said ‘hell yeah’ and [Josh] scurried off to his workshop for a few months. He’s back with his tank-based robot. One really interesting bit is the robot responds to DTMF tones, allowing it to be controlled through Skype without any additional hardware. That’s damn clever. You can see a video of the SkypeRobot after the break.

Continue reading “Android Controlled Robot Extravaganza”

Inexpensive Robot Platform Combines Mass-produced Parts

Meet Bilibot, a modular robot that aims to lower the cost of entry for robotic tinkerers. It combines the Kinect, the iRobot Create, and an Ubuntu box running ROS using some laser cut mounting brackets. These are relatively inexpensive components but the most exciting thing is that there’s already a slew of example out there that use this hardware. For instance, we looked in on ROS body tracking in January that can be directly plucked and used with this hardware. You’ll recognize the base as the iRobot create which was used in video chat robot from last week. The brains of the operation come in a choice of three Linux boxes – two headless and one laptop – which have ROS pre-installed. Watch the open-source autonomy as it tools around the office in the video after the break.

Continue reading “Inexpensive Robot Platform Combines Mass-produced Parts”