Repeatable “One-Click” Fusion, From Your Cellphone

Sometimes you spend so much time building and operating your nuclear fusor that you neglect the creature comforts, like a simple fusion control profile or a cellphone app to remote control the whole setup. No worries, [Nate Sales] has your back with his openreactor project, your one-click fusion solution!

An inertial electrostatic confinement (IEC) fusor is perhaps the easiest type of fusion for the home gamer, but that’s not the same thing as saying that building and running one is easy. It requires high vacuum, high voltage, and the controlled introduction of deuterium into the chamber. And because it’s real-deal fusion, it’s giving off neutrons, which means that you don’t want to be standing on the wrong side of the lead shielding. This is where remote control is paramount.

While this isn’t an automation problem that many people will be having, to put it lightly, it’s awesome that [Nate] shared his solution with us all. Sure, if you’re running a different turbo pump or flow controller, you might have some hacking to do, but at least you’ve got a start. And if you’re simply curious about fusion on a hobby scale, his repo is full of interesting details, from the inside.

And while this sounds far out, fusion at home is surprisingly attainable. Heck, if a 12-year old or even a YouTuber can do it, so can you! And now the software shouldn’t stand in your way.

Thanks [Anon] for the tip!

Danger Is My Middle Name

Last week, [Al Williams] wrote up a his experience with a book that provided almost too much detailed information on how to build a DIY x-ray machine for his (then) young soul to bear. He almost had to build it! Where the “almost” is probably both a bummer because he didn’t have an x-ray machine as a kid, but also a great good because it was a super dangerous build, of a typical sort for the 1950s in which it was published.

Part of me really loves the matter-of-factness with which “A Boy’s First Book of Linear Accelerators” tells you how you (yes you!) can build a 500 kV van der Graff generator. But at the same time, modern me does find the lack of safety precautions in many of these mid-century books to be a little bit spooky. Contrast this with modern books where sometimes I get the feeling that the publisher’s legal team won’t let us read about folding paper airplanes for fear of getting cut.

A number of us have built dangerous projects in our lives, and many of us have gotten away with it. Part of the reason that many of us are still here is that we understood the dangers, but I would be lying if I said that I always fully understood them. But thinking about the dangers is still our first and best line of defense. Humility about how well you understand all of the dangers of a certain project is also very healthy – if you go into it keeping an eye out for the unknown unknowns, you’re in better shape.

Safety isn’t avoiding danger, but rather minimizing it. When we publish dangerous hacks, we really try to at least highlight the most important hazards so that you know what to look out for. And over the years, I’ve learned a ton of interesting safety tricks from the comments and fellow hackers alike. My ideal, then, is the spirit of the 1950s x-ray book, which encourages you to get the hack built, but modernized so that it tells you where the dangers lie and how to handle them. If you’re shooting electrons, shouldn’t the book also tell you how to stay out of the way?

The Guinness Brewery Invented One Of Science’s Most Important Statistical Tools

The Guinness brewery has a long history of innovation, but did you know that it was the birthplace of the t-test? A t-test is usually what underpins a declaration of results being “statistically significant”. Scientific American has a fascinating article all about how the Guinness brewery (and one experimental brewer in particular) brought it into being, with ramifications far beyond that of brewing better beer.

William Sealy Gosset (aka ‘Student’), self-trained statistician. [source: user Wujaszek, wikipedia]
Head brewer William Sealy Gosset developed the technique in the early 1900s as a way to more effectively monitor and control the quality of stout beer. At Guinness, Gosset and other brilliant researchers measured everything they could in their quest to optimize and refine large-scale brewing, but there was a repeated problem. Time and again, existing techniques of analysis were simply not applicable to their gathered data, because sample sizes were too small to work with.

While the concept of statistical significance was not new at the time, Gosset’s significant contribution was finding a way to effectively and economically interpret data in the face of small sample sizes. That contribution was the t-test; a practical and logical approach to dealing with uncertainty.

As mentioned, t-testing had ramifications and applications far beyond that of brewing beer. The basic question of whether to consider one population of results significantly different from another population of results is one that underlies nearly all purposeful scientific inquiry. (If you’re unclear on how exactly the t-test is applied and how it is meaningful, the article in the first link walks through some excellent and practical examples.)

Dublin’s Guinness brewery has a rich heritage of innovation so maybe spare them a thought the next time you indulge in statistical inquiry, or in a modern “nitro brew” style beverage. But if you prefer to keep things ultra-classic, there’s always beer from 1574, Dublin castle-style.

Bidirectional Data Transfer Through Mud?

We take easy communications for granted these days. It’s no bother to turn on a lightbulb remotely via a radio link or sense the water level in your petunias, but how does a drilling rig sense data from the drill head whilst deep underground, below the sea bed? The answer is with mud pulse telemetry, about which a group of researchers have produced a study, specifically about modelling the signal impairments and strategies for maintaining the data rate and improving the signal quality.

If you’re still confused, mud pulse telemetry (MPT) works by sending a modulated pressure wave vertically through the column of mud inside the drilling tube. It’s essential to obtain real-time data during drilling operations on the exact angle and direction the drill bit is pointing (so it can be corrected) and details of geological formations so decisions can be made promptly. The goal is to reduce drilling time and, therefore, costs and minimize environmental impact — although some would strongly argue about that last point.

Continue reading “Bidirectional Data Transfer Through Mud?”

Heating Mars On The Cheap

Mars is fairly attractive as a potential future home for humanity. It’s solid, with firm land underfoot. It’s able to hang on to a little atmosphere, which is more than you can say about the moon. It’s even got a day/night cycle remarkably close to our own. The only problem is it’s too darn cold, and there’s not a lot of oxygen to breathe, either.

Terraforming is the concept of fixing problems like these on a planet-wide scale. Forget living in domes—let’s just make the whole thing habitable!

That’s a huge task, so much current work involves exploring just what we could achieve with today’s technology. In the case of Mars, [Casey Handmer] doesn’t have a plan to terraform the whole planet. But he does suggest we could potentially achieve significant warming of the Red Planet for $10 billion in just 10 years. Continue reading “Heating Mars On The Cheap”

A Simple Seismometer You Can Build Yourself

If you’re a child, there are certain things you’re taught even though they’re probably not directly relevant to your life. We teach young kids all about dinosaurs, and we teach older kids all about how the mitochondria is the powerhouse of the cell. We also teach kids about natural phenomena like earthquakes, and the equipment used to measure them. Namely, seismometers. You might like to satisfy your own child-like curiosity by building one of your own, like [mircemk] did.

Output from the build showing tremors in the Earth.

The build starts with a sensitive geophone of [mircemk’s] own design. That’s basically a microphone but it’s for picking up vibrations in the ground, not in the air. However, a geophone is not enough. You need to be able to pick up the signals from the geophone and then plot them if you want a seismometer.

First, the signals from the geophone must be amplified, which is achieved with a small circuit based around the LM358 op-amp. From there, the signal is sent to an Arduino where the output is captured via the analog-to-digital converter. This passes the signal to an attached PC which plots the results using a piece of software called NERdaq, which was developed for schools that built their own slinky-based seismometers.

[mircemk] reports that this setup has served as a reliable tool for visualizing earthquake activity for over 6 years. Though, it bears noting, it’s not calibrated so don’t expect to get science grade results out of it. Regardless, though, it’s a super cool way to understand more about what is going on with the geology around us. Video after the break.

Continue reading “A Simple Seismometer You Can Build Yourself”

Ask Hackaday: What If You Did Have A Room Temperature Superconductor?

The news doesn’t go long without some kind of superconductor announcement these days. Unfortunately, these come in several categories: materials that require warmer temperatures than previous materials but still require cryogenic cooling, materials that require very high pressures, or materials that, on closer examination, aren’t really superconductors. But it is clear the holy grail is a superconducting material that works at reasonable temperatures in ambient temperature. Most people call that a room-temperature superconductor, but the reality is you really want an “ordinary temperature and pressure superconductor,” but that’s a mouthful.

In the Hackaday bunker, we’ve been kicking around what we will do when the day comes that someone nails it. It isn’t like we have a bunch of unfinished projects that we need superconductors to complete. Other than making it easier to float magnets, what are we going to do with a room-temperature superconductor? Continue reading “Ask Hackaday: What If You Did Have A Room Temperature Superconductor?”