Hacking Oklahoma State University’s Student ID Cards

[Sam] took an information security class at Oklahoma State University back in 2013. For his final project, he and a team of other students had to find a security vulnerability and then devise a theoretical plan to exploit it. [Sam’s] team decided to focus on the school’s ID cards. OSU’s ID cards are very similar to credit cards. They are the same size and shape, they have data encoded on a magnetic strip, and they have a 16 digit identification number. These cards were used for several different purposes. Examples include photo ID, physical access to some areas on campus, charges to an online account, and more.

[Sam] and his team analyzed over 100 different cards in order to get a good sample. They found that all cards started with same eight digits. This is similar to the issuer identification number found in the first six digits of a credit card number. Th analysis also showed that there were only three combinations used for the next two digits. Those were either 05, 06, or 11. With that in mind, the total possible number of combinations for card numbers was mathematically calculated to be three million.

OSU also had a URL printed on the back of each card. This website had a simple form with a single field. The user can enter in a 16 digit card number and the system would tell the user if that card was valid. The page would also tell you if the card holder was an employee, a student, or if there were any other special flags on the card. We’re not sure why every student would need access to this website, but the fact is that the URL was printed right on the back of the card. The website also had no limit to how many times a query could be made. The only hint that the university was aware of possible security implications was the disclaimer on the site. The disclaimer mentioned that usage of the tool was “logged and tracked”.

The next step was to purchase a magnetic card reader and writer. The team decoded all of the cards and analyzed the data. They found that each card held an expiration date, but the expiration date was identical for every single card.  The team used the reader/writer to copy the data from [Sam’s] card and modify the name. They then wrote the data back onto a new, blank magnetic card. This card had no printing or markings on it. [Sam] took the card and was able to use it to purchase items from a store on campus. He noticed that the register reached back to a server somewhere to verify his real name. It didn’t do any checks against the name written onto the magstripe. Even still, the cashier still accepted a card with no official markings.

The final step was to write a node.js script to scrape the number verification website. With just 15 lines of code, the script will run through all possible combinations of numbers in a random sequence and log the result. The website can handle between three and five requests per second, which means that brute forcing all possible combinations can be completed in roughly two days. These harvested numbers can then be written onto blank cards and potentially used to purchase goods on another student’s account.

[Sam’s] team offers several recommendations to improve the security of this system. One idea is to include a second form of authorization, such as a PIN. The PIN wouldn’t be stored on the card, and therefore can’t be copied in this manner. The primary recommendation was to take down the verification website. So far OSU has responded by taking the website offline, but no other changes have been made.

Another Garage Door Opener, This Time With Security

We’ve been seeing a lot of garage door opener hacks, whether it’s because one person inspired everyone else to build their own Internet-connected GDO or because there’s something in the water that’s caused the simultaneous building of one specific type of project, we’re not sure. However, the latest one we’ve seen adds a little something extra: motion-based security.

[DeckerEgo] really went all out with this one, too. The core of the project is a Raspberry Pi hardwired to a universal garage door remote. The Pi also handles a small webcam and runs a program called motion, which is a Linux program that allows for all kinds of webcam fun including motion detection. While the other builds we see usually use a button or limit switch to tell whether the door is open or closed, this one just watches the door with the webcam so [DeckerEgo] can actually see what’s going on in the garage. As a bonus, the motion software can be configured to alert him if anything suspicious is going on in the garage.

The build is full-featured as well, with an interesting user interface overlaid on the live picture of the garage door. According to [DeckerEgo] the camera is a necessity because he wouldn’t trust a simple status indicator, but if you wanted to try one of those before breaking out the Raspberry Pi, we’ve featured one recently that you can check out.

RasPi Doorbell

Raspberry Pi Doorbell Is Fully Featured

When you think of a doorbell, you typically don’t think of anything very complicated. It’s a button that rings a bell inside your home. That’s about it. [Ahmad] decided he wanted to turn his doorbell up to eleven (Google Doc) with this build. Using a Raspberry Pi, he was able to cram in loads of features.

When the doorbell button is pressed, many different events can be triggered. In the demo video, [Ahmad] shows how his phone receives a text message, and email, and a tweet. The system can even be configured to place a voice call via Google Hangouts using a USB microphone. [Ahmad] demonstrates this and shows how the voice call is placed almost instantly when the button is pressed. This may be a bit overkill, but it does demonstrate many different options depending on your own needs.

For the hardware side of things, [Ahmad] purchased a wireless doorbell. He opened up the ringer unit and hooked up the speaker wires to a couple of pins on the Raspberry Pi through a resistor. The doorbell unit itself is powered off of the 3.3V supply from the Pi. The Pi also has a small LCD screen which shows helpful information such as if the Internet connection is working. The screen will also display the last time and date the doorbell was pressed, in case you weren’t home to answer the door.

On top of all of that, the system also includes a Raspberry Pi camera module. This allows [Ahmad] to take a photo of the person ringing the doorbell as a security measure. He can even view a live video feed from the front door by streaming directly to YouTube live. [Ahmad] has provided a link to his Pi image in the Google Doc so others can use it and modify it as they see fit. Continue reading “Raspberry Pi Doorbell Is Fully Featured”

Facebook Bounty

Deleting Facebook Albums Without Permission

[Laxman] was poking around Facebook looking for security vulnerabilities. Facebook runs a bug bounty program which means if you can find a vulnerability that’s serious enough, it can earn you cold hard cash. It didn’t take much for [Laxman] to find one worthy of a bounty.

The graph API is the primary way for Facebook apps to read and write to the Facebook social graph. Many apps use this API, but there are limitations to what it can do. For example, the API is unable to delete users’ photo albums. At least, it’s not supposed to be able too. [Laxman] decided to test this claim himself.

He started by sending a command to delete one of his own albums using a graph explorer access token. His request was denied. The application didn’t have the correct permissions to be able to perform that action. It seemed that Facebook was correct and the API was unable to delete photos. [Laxman] had another trick up his sleeve, though. He noticed that the wording of the response suggested that other apps would have the ability to delete the albums, so he decided to check the Facebook mobile application.

He decided to send the same request with a different token. This time he used a token from the Facebook for Mobile application. This actually worked, and resulted in his photo album being deleted. To take things a step further, [Laxman] sent the same requests, but changed the user’s ID to a victim account he had set up. The request was accepted and processed without a problem. This meant that [Laxman] could effectively delete photo albums from any other user without that user’s consent. The vulnerability did require that [Laxman] had permission to view the album in the first place.

Since [Laxman] is one of the good guys, he sent this bug in to the Facebook team. It took them less than a day to fix the issue and they rewarded [Laxman] $12,500 for his trouble. It’s always nice to be appreciated. The video below shows [Laxman] walking through how he pulled off this hack using Burp Suite. Continue reading “Deleting Facebook Albums Without Permission”

Resurrecting Capcom’s Kabuki

About a dozen old Capcom arcade titles were designed to run on a custom CPU. It was called the Kabuki, and although most of the core was a standard Z80, a significant portion of the die was dedicated to security. The problem back then was arcade board clones, and when the power was removed from a Kabuki CPU, the memory contents of this security setup were lost, the game wouldn’t play, and 20 years later, people writing emulators were tearing their hair out.

Now that these games are decades old, the on-chip security for the Kabuki CPU is a problem for those who have taken up the task of preserving these old games. However, now these CPUs can be decuicided, programming the chip and placing them in an arcade board without losing their memory contents.

Earlier we saw [ArcadeHacker] a.k.a. [Eduardo]’s efforts to resurrect these old CPUs. He was able to run new code on the Kabuki, but to run the original, unmodified ROMs that came in these arcade games required hardware. Now [ArcadeHacker] has it.

The setup consists of a chip clip that clamps over the Kabuki CPU. With a little bit of Arduino code, the security keys for original, unmodified ROMs can be flashed, put into the arcade board (where the contents of the memory are backed up by a battery), and the clip released. [ArcadeHacker] figures this is how each arcade board was programmed in the factory.

If you’re looking for an in-depth technical description of how to program a Kabuki, [ArcadeHacker] has an incredibly detailed PDF right here.

Continue reading “Resurrecting Capcom’s Kabuki”

BagAlarm

Motion Activated Alarm For Your Bag

Many of us carry around a bag with our expensive personal belongings. It can be a pain to carry a bag around with you all day though. If you want to set it down for a while, you often have to try to keep an eye on it to ensure that no one steals it. [Micamelnyk] decided to build a solution to this problem in the form of a motion sensing alarm.

The device is built around a Trinket Pro. The Trinket Pro is a sort of break out board for the ATMega328. It’s compatible with the Arduino IDE and also contains a USB port for easy programming. The Trinket is hooked up to a GY-521 accelerometer, which allows it to detect motion. When the Trinket senses that the device has been moved, it emits a loud high-pitched whine from a piezo speaker.

To arm the device, the user first holds the power button for 3 seconds. Then the user has ten seconds to enter their secret code. This ensures that the device is never armed accidentally and that the user always remembers the code before arming the device. The code is entered via four push buttons mounted to a PCB. The code and code length can both be easily modified in the Trinket software.

Once the code is entered, the status LED will turn solid. This indicates to the user that the device must be placed stationary. The LED will turn off after 20 seconds, indicating that the alarm is now armed. If the bag is moved for more than five seconds at a time, the alarm will sound. The slight delay gives the user just enough time to disarm the alarm. This parameter can also be easily configured via software.

Using HID Tricks To Drop Malicious Files

[Nikhil] has been experimenting with human interface devices (HID) in relation to security. We’ve seen in the past how HID can be exploited using inexpensive equipment. [Nikhil] has built his own simple device to drop malicious files onto target computers using HID technology.

The system runs on a Teensy 3.0. The Teensy is like a very small version of Arduino that has built-in functionality for emulating human interface devices, such as keyboards. This means that you can trick a computer into believing the Teensy is a keyboard. The computer will treat it as such, and the Teensy can enter keystrokes into the computer as though it were a human typing them. You can see how this might be a security problem.

[Nikhil’s] device uses a very simple trick to install files on a target machine. It simply opens up Powershell and runs a one-liner command. Generally, this commend will create a file based on input received from a web site controlled by the attacker. The script might download a trojan virus, or it might create a shortcut on the user’s desktop which will run a malicious script. The device can also create hot keys that will run a specific script every time the user presses that key.

Protecting from this type off attack can be difficult. Your primary option would be to strictly control USB devices, but this can be difficult to manage, especially in large organizations. Web filtering would also help in this specific case, since the attack relies on downloading files from the web. Your best bet might be to train users to not plug in any old USB device they find lying around. Regardless of the methodology, it’s important to know that this stuff is out there in the wild.