Hackaday Links: November 8, 2020

Saturday, November 7, 2020 – NOT PASADENA. Remoticon, the virtual version of the annual Hackaday Superconference forced upon us by 2020, the year that keeps on giving, is in full swing. As I write this, Kipp Bradford is giving one of the two keynote addresses, and last night was the Bring a Hack virtual session, which I was unable to attend but seems to have been very popular, at least from the response to it. In about an hour, I’m going to participate in the SMD Soldering Challenge on the Hackaday writing crew team, and later on, I’ll be emceeing a couple of workshops. And I’ll be doing all of it while sitting in my workshop/office here in North Idaho.

Would I rather be in Pasadena? Yeah, probably — last year, Supercon was a great experience, and it would have been fun to get together again and see everyone. But here we are, and I think we’ve all got to tip our hacker hats to the Remoticon organizers, for figuring out how to translate the in-person conference experience to the virtual space as well as they have.

The impact of going to a museum and standing in the presence of a piece of art or a historic artifact is hard to overstate. I once went to an exhibit of artifacts from Pompeii, and was absolutely floored to gaze upon a 2,000-year-old loaf of bread that was preserved by the volcanic eruption of 79 AD. But not everyone can get to see such treasures, which is why Scan the World was started. The project aims to collect 3D scans of all kinds of art and artifacts so that people can potentially print them for study. Their collection is huge and seems to concentrate on classic sculptures — Michelangelo’s David is there, as are the Venus de Milo, the Pieta, and Rodin’s Thinker. But there are examples from architecture, anatomy, and history. The collection seems worth browsing through and worth contributing to if you’re so inclined.

For all the turmoil COVID-19 has caused, it has opened up some interesting educational opportunities that probably wouldn’t ever have been available in the Before Time. One such opportunity is an undergraduate-level course in radio communications being offered on the SDRPlay YouTube channel. The content was created in partnership with the Sapienza University of Rome. It’s not entirely clear who this course is open to, but the course was originally designed for third-year undergrads, and the SDRPlay Educators Program is open to anyone in academia, so we’d imagine you’d need some kind of academic affiliation to qualify. The best bet might be to check out the intro video on the SDRPlay Educator channel and plan to attend the webinar scheduled for November 19 at 1300 UTC. You could also plan to drop into the Learning SDR and DSP Hack Chat on Wednesday at noon Pacific, too — that’s open to everyone, just like every Hack Chat is.

And finally, as if bald men didn’t suffer enough disrespect already, now artificial intelligence is having a go at them. At a recent soccer match in Scotland, an AI-powered automatic camera system consistently interpreted an official’s glabrous pate as the soccer ball. The system is supposed to keep the camera trained on the action by recognizing the ball as it’s being moved around the field. Sadly, the linesman in this game drew the attention of the system quite frequently, causing viewers to miss some of the real action. Not that what officials do during sporting events isn’t important, of course, but it’s generally not what viewers want to see. The company, an outfit called Pixellot, knows about the problem and is working on a solution. Here’s hoping the same problem doesn’t crop up on American football.

Fifa Looks At Electronic Augmentation

The [Fédération Internationale de Football Association] is joining the growing list of professional sports that is adopting technological means in an attempt to help the human referees. After a botched call in 2010 the organization called for a system that would work day or night, with 100% accuracy and the ability to report to the Refs in less than 1 second. The applicants have been weeded out and it comes down to two systems, both of which use a piece of personal hardware we’re quite familiar with. [Fe80], who sent in the tip, recognized the TI Chronos eZ430 watch in the image above.

The two systems both use the watch as an interface, but work very differently. The first, called GoalRef, uses a sensor suspended inside the ball. This detects a magnetic field made up by the goal posts. We’d guess it’s an inductance sensor that is triggered when it passes a coil in the goal posts (we didn’t find much in the way of technical info so please do your own speculation in the comments). The second system is very familiar. It’s the Hawkeye camera system used by the APT (Tennis) in all the major tournaments.

Soccer Simulator Rules A Child’s Birthday Party

Being a dedicated father, soccer coach, general tinkerer, and electrical engineer, [Dave] decided to build a soccer simulator video game for his son’s 6th birthday party. The concept behind the game is to put a soccer ball on a tee and have an eager line of six-year-olds kick the ball into the goal. A video of a goalie is projected behind the net, and sensors in the goal will determine if the player scored a goal or not.

The first part of [Dave]’s project was getting footage of a goalie diving for a soccer ball. Luckily, [Dave] is friends with [Mark Macdonald], a former NCAA goalie. After 10 minutes in the park with [Mark] and a 720p camera, [Dave] had all the footage needed to build his video game.

To detect where the soccer ball passed into the goal, [Dave] built a small soccer goal studded with infrared LEDs and infrared beam break sensors. Combined with a small switch underneath the ball tee, the software knows the time of flight and where the ball crossed into the goal. The game processes these two numbers to determine if it’s a goal, or was caught by the retired pro goalie.

The kids at the birthday party lined up to play [Dave]’s soccer game – a huge achievement getting 6-year-olds to wait their turn. We admit that we’d like to have a go at this game, although we’re pretty sure we saw an arcade version of this game years and years ago.

Vuvuzela Removal

We’re hearing complaints everywhere about the noisemakers called Vuvuzelas during the world cup. Whether you are a fan of the sport or not, you can appreciate when a fellow hacker gets annoyed and start hacking. [Tube] has created a software filter that manages to remove the sound of the Vuvuzela from the videos. He shares the process of how it was all created, using Logic Express and a Mac mini (Google translation). Maybe this will also provide some relief from the constant stream of Vuvuzela whining as well.

[via DVice]

Robocup Bot Places Wheels Perpendicularly

[Eric] built this robot for the 2009 Robocup Jr. competition. The game ball has IR LEDs inside of it and this little bot uses eight IR detectors for tracking. Four motors mounted perpendicular to each other provide locomotion. Since this would normally have you traveling in circles, he used some omnidirectional wheels walled Transwheels. As you can see, they have small rollers built-in and allow movement in any direction if the motors work together. A couple of L298 controller chips handle the motors. [Eric] wrote a program to calculate the PWM necessary to drive the controllers and to coordinate movement of the wheels.

Don’t miss the demo videos after the break and, if you’re not a fan of wheels, stop by and see the bi-pedal soccer robots. Continue reading “Robocup Bot Places Wheels Perpendicularly”

Football Hero

footie

For Kasabian’s new single Underdog, they decided to do something original. After dreaming up a Guitar Hero style controller powered by soccer football players, they set out to make it happen. Using 5 wall mounted pressure sensors connected to a microcontroller, they hooked up the rig to a computer running Frets on Fire (an open source Guitar Hero clone) with a custom version of their single. After an afternoon of practice, the team was able to 5 star the song, and while this isnt the only or most complex Guitar Hero hack, we would love to have this in our house.

Video after the break.

Continue reading “Football Hero”

Score Online With Robot Soccer

robot-soccer

[Erik] and [Heni] have been using soccer as a way to improve code development techniques in robotics. Their soccer playing robots won first prize in the development competition at the 2007 RoboCup competition. They are using a teaching method they call Kinesthetic Bootstrapping to program the motions of the Bioloid robotic platform. The robots are moved by hand and those motions are recorded twenty times per second. The recorded data is then optimized in software and ready for playback in the robot.

After the break you’ll see a video of the robots playing soccer against each other. They receive commands from a computer via zig-bee with Nintendo Wii remotes as the user interface. That’s all fine and dandy, but perhaps you should try your own hand at a game. [Erik] and [Heni] developed a web interface that allows you to control the bots over the internet. We tried it out yesterday and had quite a bit of fun. We set the video stream to “Spectator” and “Jpeg Server Push” to get an image. You’ll have to wait until next week to play because the bots need someone to pick then up when they fall over. Live play is scheduled for Mondays and Wednesdays from 4-6pm GMT+2. That should give you plenty of time to program your Arduino to say “Gooooooooooaaaaaaaaaaaaaalllllllllll!!!” when you score. Continue reading “Score Online With Robot Soccer”