The Math Behind The Music Of The 80s

Although there might have been other music produced or recorded in the 1980s, we may never know of its existence due to the cacophony of all of the various keytars, drum machines, and other synthesized music playing nonstop throughout the decade. There was perhaps no more responsible synthesizer than the Yamaha DX7 either; it nearly single-handedly ushered in the synth pop era. There had been other ways of producing similar sounds before but none were as unique as this keyboard, and for ways beyond just its sound as [Kevin] describes in this write-up.

Part of the reason the DX7 was so revolutionary was that it was among the first accessible synthesizers that was fully digital, meaning could play more than one note at a time since expensive analog circuitry didn’t need to be replicated for multiple keys. But it also generated its tones by using frequency modulation of sine waves in a way that allowed many signals to be combined to form different sounds. While most popular musicians of the 80s used one of the preset sounds of the synthesizer, it could produce an incredible range of diverse sounds if the musician was willing to dig a bit into the programming of this unique instrument.

There were of course other reasons this synthesizer took off. It was incredibly robust, allowing a musician to reliably carry it from show to show without much worry, and it also stood on the shoulders of giants since musicians had been experimenting with various other types of synthesizers for the previous few decades. And perhaps it was at the right place and time for the culture as well. For a look at the goings on inside the chip that powered the device, [Ken Shirriff] did a deep dive into one a few years ago.

Minichord Wants To Help You Find Rad Chord Progressions

If you’re good at music theory, you can probably find all the chords and progressions you need just by using your fingers and a suitable instrument. For a lot of musicians, though, remembering huge banks of chords can be difficult, and experimenting with combinations can quickly become tedious and tiring. Enter the minichord, a tiny version of the Omnichord synth designed by [Benjamin] that offers to help out by putting all the chords you need a mere button press away.

The minichord is based around the Teensy 4.0, a capable microcontroller platform if ever there was one. It’s paired with a bunch of tactile buttons which are used to tell the Teensy which chord you desire to play. Various combinations of buttons can be used to play more advanced chords, too. There are potentiometers on board as well for volume control, as well as a touch pad for “strumming” arpeggios and other fine control tasks. An online interface allows modifying the presets onboard, too.

[Benjamin] hopes to get the minichord into production; it’s currently in a Seeedstudio competition that could see that happen, based on likes on the project video. The minichord isn’t the only player in this space, of course. The Orchard synth has been making similar waves this week. We’ve seen [Benjamin’s] work before, too. Video after the break. Continue reading “Minichord Wants To Help You Find Rad Chord Progressions”

The Commodordion Gets A Big Usability Upgrade

The chiptune scene is dominated by Game Boys and other Nintendo hardware, but one should never forget the gorgeous, beautiful tones that come from the hallowed Commodore 64. [Linus Ã…kesson] knows this well, and it’s at the heart of his work on the Commodordion. Now, he’s built an even better version.

The original idea he had was to build an accordion-like control surface for the SID chip in a Commodore 64. The device is capable of creating beautiful accordion-like music with a simple 8-bit flair. He has since dubbed the original Commodordion the “bass Commodordion,” while the new version is classified as a tenor instrument.

The prime upgrades are ergonomic. The previous instrument was too heavy, with the left hand having to carry an entire Commodore 64 on its own. It was also hard to reach the keys. The new version is much lighter, with one of the two C64s of the original having been removed. The supporting electronics have been redesigned to more neatly fit into a space behind the bellows.

The result is a machine that’s far easier to play, and one that won’t injure the user in extended play sessions. “It’s now a pleasure, not a pain,” says [Linus]. The payoff in usability is obvious, and the tunes themselves are hauntingly beautiful.

We first covered the Commordordion back in 2022, but it wasn’t the first time we saw one of [Linus]’s impressive creations.

Continue reading “The Commodordion Gets A Big Usability Upgrade”

The Last Instrument To Get Auto-Tuned

Various decades have their musical signature, like the excessive use of synthesizers and hairspray in the 1980s pop music scene. Likewise, the early 2010s was marked by a fairly extreme use of autotune, a technology that allows sounds, especially vocals, to be shifted to precise pitches regardless of the pitch of the original source. In this dark era, a wide swath of instruments and voices on the charts were auto-tuned at some point, although we don’t remember this iconic instrument ever being featured among the annals of pitch-shifted pop music.

The auto-tuned kazoo created by [Guy Dupont] does its pitch corrections on-the-fly thanks to a built-in ESP-32-S3 microcontroller which, through a microphone inside the kazoo, listens for note of the musician’s hum and corrects it to the closest correctly pitched note. Once it identifies the note it outputs a kazoo-like pitch-corrected note from a small speaker, also hidden inside the instrument. It does this fast enough for live performances using the YIN fundamental frequency estimation algorithm. Not only can the kazoo be played directly, but thanks to the implementation of MIDI it can be used to control other synthesizers or be played through other means as a stand-alone synthesizer.

Much like the 80s, where the use of synthesizers relaxed from excessive use on nearly every instrument on every track throughout the decade to a more restrained use as the decade faded, so has autotune been toned down in most music to be more subtly applied. But like our enjoyment of heavily synthesized tunes outside the 80s like those by Daft Punk or The Weeknd, we can also appreciate something heavily auto-tuned outside of the 2010s like a stylized kazoo or a T-Pain-style guitar effects pedal.

Continue reading “The Last Instrument To Get Auto-Tuned”

Bluetooth Wearable Becomes Rad Synth Controller

Once upon a time, a watch was just a watch. These days, though, smartwatches have all kinds of tricks built in, from heartrate sensors, to accelerometers, gyros, and tons of networking capability. Take advantage of just some of that hardware, and you have yourself a pretty nifty controller. And that’s precisely what [Simon Brem] did.

The project is based around the capable PineTime smartwatch, which [Simon] has been using with the InfiniTime firmware. On this platform, he created an app that sends out Bluetooth MIDI commands straight from the watch. It can be used as a motion controller, where waving and angling the watch can be used to control MIDI parameters, or it can be used to sync BPM to the wearer’s heartrate. [Simon] demonstrates an example use case in a demo video, where the watch is used to control filters in pleasant ways.

We’ve seen a lot of neat watch hacks lately, as it turns out! To say nothing of the brilliant MIDI controllers that have come through these doors, as well. Video after the break.

Continue reading “Bluetooth Wearable Becomes Rad Synth Controller”

You Can Use A Crappy Mixer As A Neat Synthesizer

[Simon the Magpie] found himself in possession of a Behringer mixer that turned up in someone’s garbage. They’re not always the most well-regarded mixers, but [Simon] saw an opportunity to do something a bit different with it. He decided to show us all how you can use a mixer as a synthesizer.

[Simon] actually picked up the “no-input” technique from [Andreij Rublev] and decided to try it out on his own equipment. The basic idea is to use feedback through the mixer to generate tones. To create a feedback loop, connect an auxiliary output on the mixer to one of the mixer’s input channels. The gain on the channel is then increased on the channel to create a great deal of feedback. The mixer’s output is then gently turned up, along with the volume on the channel that has formed the feedback loop. If you’ve hooked things up correctly, you should have some kind of tone feedbacking through the mixer. Want to change the pitch? Easy – just use the mixer’s EQ pots!

It’s pretty easy to get some wild spacey sounds going. Get creative and you can make some crunchy sounds or weird repeating tones if you play with the mixer’s built in effects. Plus, the benefit of a mixer is that it has multiple channels. You can create more feedback loops using the additional channels if you have enough auxiliary sends for the job. Stack them up or weave them together and you can get some wild modulation going.

Who needs a modular synth when you can do all this with a four channel mixer and some cables? Video after the break.

Continue reading “You Can Use A Crappy Mixer As A Neat Synthesizer”

The Small And Silly Synth Now Even Smaller (But Just As Silly)

What do you do when you’ve carved out a niche for yourself as a builder of small and useless synthesizers? Why, build an even smaller and less useful synthesizer, of course!

If you’ve been paying even a minimal amount of attention you’ll know right away that this comes to use from [mitxela], who while not playing with volumetric POV displays is often found building smaller and smaller synthesizers, including putting them in DIN plug shells. The current synth is based on his “Silly Synth,” which puts all the guts for the synth inside a USB connector. This time around, though, it’s USB-C, and rather than fitting everything inside the connector shell, the entire synth sits on a PCB that’s smaller than a tiny piezo speaker. The whole thing runs on a CH32V003 microcontroller, and aside from a few support components and the right-angle USB-C plug, not much else.

The PCB is what really shines in [mitxela]’s design, especially the routing. He’s got a 20-pin QFN chip on one side of the board and the USB plug right behind it on the other side to deal with, plus the big through-holes for the speaker and the physical connections on the plug. It’s quite a crowded design, but it gets the job done. What’s more, he panelized the design so that mass production is possible; the reason for this is revealed at the end of the video below.

Pretty much every time we see one of these “smallest synth” videos we’re convinced that we’re seeing the lower limit of what’s possible, but every time, [mitxela] goes ahead and proves us wrong. That’s fine, of course — we don’t mind being wrong about something like this.

Continue reading “The Small And Silly Synth Now Even Smaller (But Just As Silly)”