The Commodordion Gets A Big Usability Upgrade

The chiptune scene is dominated by Game Boys and other Nintendo hardware, but one should never forget the gorgeous, beautiful tones that come from the hallowed Commodore 64. [Linus Åkesson] knows this well, and it’s at the heart of his work on the Commodordion. Now, he’s built an even better version.

The original idea he had was to build an accordion-like control surface for the SID chip in a Commodore 64. The device is capable of creating beautiful accordion-like music with a simple 8-bit flair. He has since dubbed the original Commodordion the “bass Commodordion,” while the new version is classified as a tenor instrument.

The prime upgrades are ergonomic. The previous instrument was too heavy, with the left hand having to carry an entire Commodore 64 on its own. It was also hard to reach the keys. The new version is much lighter, with one of the two C64s of the original having been removed. The supporting electronics have been redesigned to more neatly fit into a space behind the bellows.

The result is a machine that’s far easier to play, and one that won’t injure the user in extended play sessions. “It’s now a pleasure, not a pain,” says [Linus]. The payoff in usability is obvious, and the tunes themselves are hauntingly beautiful.

We first covered the Commordordion back in 2022, but it wasn’t the first time we saw one of [Linus]’s impressive creations.

Continue reading “The Commodordion Gets A Big Usability Upgrade”

The Last Instrument To Get Auto-Tuned

Various decades have their musical signature, like the excessive use of synthesizers and hairspray in the 1980s pop music scene. Likewise, the early 2010s was marked by a fairly extreme use of autotune, a technology that allows sounds, especially vocals, to be shifted to precise pitches regardless of the pitch of the original source. In this dark era, a wide swath of instruments and voices on the charts were auto-tuned at some point, although we don’t remember this iconic instrument ever being featured among the annals of pitch-shifted pop music.

The auto-tuned kazoo created by [Guy Dupont] does its pitch corrections on-the-fly thanks to a built-in ESP-32-S3 microcontroller which, through a microphone inside the kazoo, listens for note of the musician’s hum and corrects it to the closest correctly pitched note. Once it identifies the note it outputs a kazoo-like pitch-corrected note from a small speaker, also hidden inside the instrument. It does this fast enough for live performances using the YIN fundamental frequency estimation algorithm. Not only can the kazoo be played directly, but thanks to the implementation of MIDI it can be used to control other synthesizers or be played through other means as a stand-alone synthesizer.

Much like the 80s, where the use of synthesizers relaxed from excessive use on nearly every instrument on every track throughout the decade to a more restrained use as the decade faded, so has autotune been toned down in most music to be more subtly applied. But like our enjoyment of heavily synthesized tunes outside the 80s like those by Daft Punk or The Weeknd, we can also appreciate something heavily auto-tuned outside of the 2010s like a stylized kazoo or a T-Pain-style guitar effects pedal.

Continue reading “The Last Instrument To Get Auto-Tuned”

Bluetooth Wearable Becomes Rad Synth Controller

Once upon a time, a watch was just a watch. These days, though, smartwatches have all kinds of tricks built in, from heartrate sensors, to accelerometers, gyros, and tons of networking capability. Take advantage of just some of that hardware, and you have yourself a pretty nifty controller. And that’s precisely what [Simon Brem] did.

The project is based around the capable PineTime smartwatch, which [Simon] has been using with the InfiniTime firmware. On this platform, he created an app that sends out Bluetooth MIDI commands straight from the watch. It can be used as a motion controller, where waving and angling the watch can be used to control MIDI parameters, or it can be used to sync BPM to the wearer’s heartrate. [Simon] demonstrates an example use case in a demo video, where the watch is used to control filters in pleasant ways.

We’ve seen a lot of neat watch hacks lately, as it turns out! To say nothing of the brilliant MIDI controllers that have come through these doors, as well. Video after the break.

Continue reading “Bluetooth Wearable Becomes Rad Synth Controller”

You Can Use A Crappy Mixer As A Neat Synthesizer

[Simon the Magpie] found himself in possession of a Behringer mixer that turned up in someone’s garbage. They’re not always the most well-regarded mixers, but [Simon] saw an opportunity to do something a bit different with it. He decided to show us all how you can use a mixer as a synthesizer.

[Simon] actually picked up the “no-input” technique from [Andreij Rublev] and decided to try it out on his own equipment. The basic idea is to use feedback through the mixer to generate tones. To create a feedback loop, connect an auxiliary output on the mixer to one of the mixer’s input channels. The gain on the channel is then increased on the channel to create a great deal of feedback. The mixer’s output is then gently turned up, along with the volume on the channel that has formed the feedback loop. If you’ve hooked things up correctly, you should have some kind of tone feedbacking through the mixer. Want to change the pitch? Easy – just use the mixer’s EQ pots!

It’s pretty easy to get some wild spacey sounds going. Get creative and you can make some crunchy sounds or weird repeating tones if you play with the mixer’s built in effects. Plus, the benefit of a mixer is that it has multiple channels. You can create more feedback loops using the additional channels if you have enough auxiliary sends for the job. Stack them up or weave them together and you can get some wild modulation going.

Who needs a modular synth when you can do all this with a four channel mixer and some cables? Video after the break.

Continue reading “You Can Use A Crappy Mixer As A Neat Synthesizer”

The Small And Silly Synth Now Even Smaller (But Just As Silly)

What do you do when you’ve carved out a niche for yourself as a builder of small and useless synthesizers? Why, build an even smaller and less useful synthesizer, of course!

If you’ve been paying even a minimal amount of attention you’ll know right away that this comes to use from [mitxela], who while not playing with volumetric POV displays is often found building smaller and smaller synthesizers, including putting them in DIN plug shells. The current synth is based on his “Silly Synth,” which puts all the guts for the synth inside a USB connector. This time around, though, it’s USB-C, and rather than fitting everything inside the connector shell, the entire synth sits on a PCB that’s smaller than a tiny piezo speaker. The whole thing runs on a CH32V003 microcontroller, and aside from a few support components and the right-angle USB-C plug, not much else.

The PCB is what really shines in [mitxela]’s design, especially the routing. He’s got a 20-pin QFN chip on one side of the board and the USB plug right behind it on the other side to deal with, plus the big through-holes for the speaker and the physical connections on the plug. It’s quite a crowded design, but it gets the job done. What’s more, he panelized the design so that mass production is possible; the reason for this is revealed at the end of the video below.

Pretty much every time we see one of these “smallest synth” videos we’re convinced that we’re seeing the lower limit of what’s possible, but every time, [mitxela] goes ahead and proves us wrong. That’s fine, of course — we don’t mind being wrong about something like this.

Continue reading “The Small And Silly Synth Now Even Smaller (But Just As Silly)”

Ferrofluid Drum Synth Dances To The Beat

[Love Hultén]’s work often incorporates reactive sound elements, and his Ferrofluid drum synth is no exception. Sadly there are no real build details but have no fear: we’ve gathered plenty of DIY insights when it comes to ferrofluid-based projects.

Ferrofluid isn’t easy to work with, but there are plenty of DIY resources to make things easier.

First of all, ferrofluid is shockingly expensive stuff. But if you can get your hands on some old VHS tapes and acetone, you can make your own. Second, working with ferrofluid to make reactive elements is harder than it may look. Particularly, making the stuff dance to sound beats isn’t as simple as putting a container of the stuff in front of a speaker coil, but people have discovered a few ways that work more reliably than others.

[Love Hultén]’s drum synth was inspired by this custom Bluetooth speaker with dancing ferrofluid by [Dakd Jung], which drives an electromagnetic coil with frequencies selected from the audio with an MSGEQ7 equalizer. That way, only frequencies that work best for moving the fluid in interesting ways get used for the visualization. The MSGEQ7 spectrum analyzer chip is very useful for music-driven projects, as demonstrated by these sound-reactive LED shades which illustrate the audio element nicely.

The coils that create the electromagnetic field causing ferrofluid to move can take different forms, but two very interesting ones are this 12-layer PCB coil and for more intricate displays, there’s a 12×21 coil array that creates a dot-matrix-like display.

We have one last tip to share about enclosures. Some readers may have noticed that this drum synth project is housed in what looks like a piece of painted lumber. Wood is certainly a versatile material for making custom shapes, and for lettering and labels it turns out that toner transfer works just as well on wood as it does for making custom PCBs.

Continue reading “Ferrofluid Drum Synth Dances To The Beat”

A man sits in front of a wooden table. There is a black box with a number of knobs hand-labeled on blue painter's tape. A white breadboard with a number of wires protruding from it is visible on the box's left side. An oscilliscope is behind the black box and has a yellow waveform displaying on its screen.

A More Expressive Synth Via Flexure

Synthesizers can make some great music, but sometimes they feel a bit robotic in comparison to their analog counterparts. [Sound Werkshop] built a “minimum viable” expressive synth to overcome this challenge. (YouTube)

Dubbed “The Wiggler,” [Sound Werkshop]’s expressive synth centers on the idea of using a flexure as a means to control vibrato and volume. Side-to-side and vertical movement of the flexure is detected with a pair of linear hall effect sensors that feed into the Daisy Seed microcontroller to modify the patch.

The build itself is a large 3D printed base with room for the flexure and a couple of breadboards for prototyping the circuits. The keys are capacitive touch pads, and everything is currently held in place with hot glue. [Sound Werkshop] goes into detail in the video (below the break) on what the various knobs and switches do with an emphasis on how it was designed for ease of use.

If you want to learn more about flexures, be sure to checkout this Open Source Flexure Construction Kit.

Continue reading “A More Expressive Synth Via Flexure”