Avocado Harvester Is A Cut Above

For a farmer or gardener, fruit trees offer a way to make food (and sometimes money) with a minimum of effort, especially when compared to growing annual vegetables. Mature trees can be fairly self-sufficient, and may only need to be pruned once a year if at all. But getting the fruit down from these heights can be a challenge, even if it is on average less work than managing vegetable crops. [Kladrie] created this avocado snipper to help with the harvest of this crop.

Compounding the problem for avocados, even compared to other types of fruit, is their inscrutable ripeness schedule. Some have suggested that cutting the avocados out of the trees rather than pulling them is a way to help solve this issue as well, so [Kladrie] modified a pair of standard garden shears to mount on top of a long pole. A string is passed through the handle so that the user can operate them from the ground, and a small basket catches the fruit before it can plummet to the Earth. A 3D-printed guide helps ensure that the operator can reliable snip the avocados off of the tree on the first try without having to flail about with the pole and hope for the best, and the part holds the basket to the pole as well.

For those living in more northern climates, this design is similar to many tools made for harvesting apples, but the addition of the guide solves a lot of the problems these tools can have which is largely that it’s easy to miss the stems on the first try. Another problem with pulling the fruits off the tree, regardless of species, is that they can sometimes fling off of their branches in unpredictable ways which the snipping tool solves as well. Although it might not work well for avocados, if you end up using this tool for apples we also have a suggestion for what to do with them next.

A researcher in a safety harness pollinates an American chestnut tree from a lift. Another researcher is on the other side of the lift and appears to be taking notes. The tree has bags over some of its branches, presumably to control the pollen that gets in. The lift has a grey platform and orange arm.

Hacking Trees To Bring Back The American Chestnut

“Chestnuts Roasting on an Open Fire” is playing on the radio now in the Northern Hemisphere which begs the question, “What happened to the American chestnut?” Would you be surprised to hear there’s a group dedicated to bringing it back from “functional extinction?” [via Inhabitat]

Between logging and the introduction of chestnut blight, the once prevalent American chestnut became increasingly uncommon throughout its traditional range in the Appalachians. While many trees in the southern range were killed by Phytophthora root rot (PRR), the chestnut blight leaves roots intact, so many chestnuts have been surviving by growing back from the roots only to succumb to the blight and be reborn again. Now, scientists are using a combination of techniques to develop blight-resistant trees from this remaining population.

The American Chestnut Foundation recognizes you can’t improve what you can’t measure and uses a combination of “small stem assays (SSAs) performed on potted seedlings, improved phenotype scoring methods for field-grown trees, and the use of genomic prediction models for scoring resistance based on genotype.” This allows them to more rapidly screen varieties for blight resistance to further their efforts. One approach is based on conventional plant breeding techniques and has been crossing blight and PRR-resistant Chinese chestnuts with the American type. PRR resistance has been found to be less genetically complicated, so progress has been faster on resistance to that particular problem. Continue reading “Hacking Trees To Bring Back The American Chestnut”

Trees Turned Into Wind Turbines, Non-Destructively

Trees and forests are an incredibly important natural resource — not only for lumber and agricultural products, but also because they maintain a huge amount of biodiversity, stabilize their local environments, and help combat climate change as a way to sequester atmospheric carbon. But the one thing they don’t do is make electricity. At least, not directly. [Concept Crafted Creations] is working on solving this issue by essentially turning an unmodified tree into a kind of wind turbine.

The idea works by first attaching a linear generator to the trunk of a tree. This generator has a hand-wound set of coils on the outside, with permanent magnets on a shaft that can travel up and down inside the set of coils. The motion to power the generator comes from a set of ropes connected high up in the tree’s branches. When the wind moves the branches, the ropes transfer the energy to a 3D printed rotational mechanism attached to a gearbox, which then pumps the generator up and down. The more ropes, branches, and generators attached to a tree the more electricity can be produced.

Admittedly, this project is still a proof-of-concept, although the currently deployed prototype seems promising. [Concept Crafted Creations] hopes to work with others building similar devices to improve on the idea and build more refined prototypes in the future. It’s also not the only way of building a wind energy generator outside of the traditional bladed design, either. It’s possible to build a wind-powered generator with no moving parts that uses vibrations instead of rotational motion as well.

Continue reading “Trees Turned Into Wind Turbines, Non-Destructively”

A large, short set of tree stumps supports many smaller, straight trees atop them. They are on a picturesque mountain with a orange deciduous tree behind them.

Daisugi – Growing Straight Lumber Without Killing The Tree

In 14th Century Japan, there was a shortage of straight lumber for building and flat land on which to grow it. Arborists there developed a technique that looks like growing trees on top of trees, called daisugi.

Similar to the European practice of pollarding for firewood and basket materials, daisugi has been likened to bonsai on steroids. Starting with a Japanese cedar tree, one chops the top off the tree once it has grown to sufficient size to survive this initial shock. The following spring, you start carefully guiding the new growth through pruning to create tall, straight trunks on top of the “platform cedar.” Pruning takes place approximately every two years and harvesting every twenty. A daisugi tree can produce new shoots for several hundred years if properly maintained.

Although often used as a decorative technique today, it seems like an interesting way to grow your own perfect lumber if you have the room for it. We suspect the technique could be used on other species that lend themselves to pollarding like oak or maple, but harvest times and reliable straight trunks might vary. With sustainable production of wood for cross-laminated timber (CLT) and other advanced timbers being of growing importance, we wonder if these techniques could make a comeback?

Continue reading “Daisugi – Growing Straight Lumber Without Killing The Tree”

A black plastic trim piece from a vehicle interior. It has slight flecking in its texture. It is sitting on an off-white bench overlooking a workshop.

Can Car Parts Grow On Trees?

Cars don’t grow on trees, but Ford is designing car parts from olive tree cuttings. [via Electrek]

Ford is no stranger to designing parts from plants for their vehicles. Henry famously liked to beat on the Soy Bean Car with a blunted axe to tout the benefits of bioplastic panels. Researchers at Ford’s Cologne, Germany facility have detailed their work to use waste from olive orchards as part of a new biocomposite from the LIVE COMPOLIVE program.

Fibers from the olive tree cuttings are mixed with recycled plastic and injection molded to form panels. The video below features interior panels that are currently made with traditional plastics that could be swapped over to the new composite. Since these cuttings are a waste product from food production, there isn’t the tension akin to that presented via biofuels vs food. We’re curious what Precious Plastics could do with this, especially if the fibers are able to reinforce the matrix.

If you want to see some other unusual uses for waste wood, why not checkout a “paper” bottle or 3D printing with sawdust?

Continue reading “Can Car Parts Grow On Trees?”

Beehive In A Bottle

One of the most common types of beekeeping hive is based around the Langstroth hive, first patented in the United States in 1852. While it does have some nice features like movable frames, the march of history has progressed considerably while this core of beekeeping practices has changed very little. But that really just means that beekeeping as a hobby is rife with opportunities for innovation, and [Advoko] is pioneering his own modern style of beehive.

In nature, bees like to live inside of things like hollowed-out tree trunks, so he has modeled his hive design after that by basing it around large inverted plastic bottles. Bees can enter in the opening at the bottle and build their comb inside from the top down. The bottles can be closed and moved easily without contacting the bees, and he even creates honey supers out of smaller bottles which allows honey to be harvested without disturbing the core beehive.There are a number of strategies to improve the bees’ stay in the bottles as well, such as giving them wooden skewers in the bottle to build their comb on and closing the bottles in insulation to help the hives regulate their temperature more evenly and to keep them dark.

He hopes this idea will help inspire those with an interest in the hobby who wouldn’t otherwise have the large amount of money it takes to set up even a few Langstroth-type hives. Even if you don’t live in a part of the world where the Langstroth hive is common, this system still should be possible to get up and running with a minimum of financial investment. Once you’ve started, though, take a look at some other builds which augment the hive with some monitoring technology.

Continue reading “Beehive In A Bottle”

Neodriver Ornament Brightens Up Christmas

Stores will sell you all kinds of gaudy holiday ornaments, but there’s nothing like the style and class achieved by building your own. [w3arycod3r] did just that, whipping up the fun and festive Neodriver Ornament.

It’s a battery-powered build, and runs off an rechargeable 18650 cell which provides several days of operation at a low duty cycle. An ATtiny85 is charged with sending out commands to various NeoPixel devices, from rings to rectangular arrays. [w3arycod3r] then designed various PCBs that could carry the hardware and battery in a well-balanced package that would hang nicely when suspended from a ribbon on a Christmas tree.

As is always the fun part with addressable LEDs, [w3arycod3r] whipped up some fun animations to suit. The 5×5 rectangular arrays of NeoPixels are able to deliver scrolling text, while another animation blips out the RNA sequence of everyone’s least favorite coronavirus, SARS-CoV-2. Getting everything to fit into a ATtiny85’s 8 KB of code space and 512 byte EEPROM was a challenge, but slimming down the Adafruit NeoPixel library and using direct AVR register manipulation in place of regular Arduino functions helped.

Overall, it’s a fun holiday build that looks great on the tree. Alternatively, consider making yourself some rheoscopic ornaments this holiday season. And, if you’ve whipped up your own fun holiday build, throw it on the tipsline!