Autonomous Delivery: Your Impulse Buys Will Still Be Safe

I heard a “Year in Review” program the other day on NPR with a BBC World Service panel discussion of what’s ahead for 2017. One prediction was that UAV delivery of packages would be commonplace this year, and as proof the commentator reported that Amazon had already had a successful test in the UK. But he expressed skepticism that it would ever be possible in the USA, where he said that “the first drone that goes over somebody’s property will be shot down and the goods will be taken.”

He seemed quite sincere about his comment, but we’ll give him the benefit of the doubt that he was only joking to make a point, not actually grotesquely ignorant about the limitations of firearms or being snarky about gun owners in the US. Either way, he brings up a good point: when autonomous parcel delivery is commonplace, who will make sure goods get to the intended recipient?

Continue reading “Autonomous Delivery: Your Impulse Buys Will Still Be Safe”

Flying A Normally-Sized Drone With A Nano-Drone’s Brain

Drones come in all shapes and size, and [Kedar Nimbalkar] was wondering if the guts of a tiny Cheerson CX-10 nano-drone could take off with a larger body, leading to an interesting brain transplant experiment.

For his test, [Kedar] acquired a CX-10 and the body of a larger Syma X5SW drone. After gutting the CX-10 for its LiPo battery and circuit board, which features an STM32 ARM-core MCU, a 6-axis IMU and the wireless transmitter, [Kedar] studied the datasheet of the onboard SQ2310ES driver MOSFETs. He figured that with a maximum continuous current rating of 6A, they would probably be able to cope with the higher load of the slightly larger motors of the X5SW body. They also didn’t seem to overheat, so he just installed the board into the new body as-is and wired up the motors.

Continue reading “Flying A Normally-Sized Drone With A Nano-Drone’s Brain”

A Drone Photosphere Is Worth 4000 Times Pi Words

One of the problems with a cheap drone is getting good video, especially in real time. Cheap hobby quadcopters often have a camera built-in or mounted in a fixed position. That’s great for fun shots, but it makes it hard to get just the right shot, especially as the drone tilts up and down, taking the camera with it. Pricey drones often have a gimbal mount to keep the camera stable, but you are still only looking in one direction.

Some cheap drones now have a VR (virtual reality) mode to feed signal to a headset or a Google Cardboard-like VR setup. That’s hard to fly, though, because you can’t really look around without moving the drone to match. You can mount multiple cameras, but now you’ve added weight and power drain to your drone.

MAGnet Systems wants to change all that with a lightweight spherical camera made to fit on a flying vehicle. The camera is under 2.5 inches square, weighs 62 grams, and draws less than 3 watts at 12 volts. It picks up a sphere that is 360 degrees around the drone’s front and back and 240 degrees centered directly under the drone. That allows a view of 30 degrees above the horizon as well as directly under the drone. There is apparently a different lens that can provide 280 degrees if you need that, although apparently that will add size and weight and be more suitable for use on the ground.

The software (see video below) runs on Windows or Android (they’ve promised an iOS version) and there’s no additional image processing hardware needed. The camera can also drive common VR headsets.

Continue reading “A Drone Photosphere Is Worth 4000 Times Pi Words”

Gremlins Are Air To Air Drones

If you are like most people, your drone flights start on the ground and end either on the ground or–in more cases than most of us want to admit–in a tree. Earlier this year, DARPA awarded initial contracts for the Gremlins program. The idea is to produce unmanned aircraft that can launch from another aircraft and then later have another aircraft recover it.

The idea is to allow a plane to launch an unmanned sensor, for example, while out of range of enemy fire. Later another aircraft can retrieve the drone where a ground crew would get it ready for another flight within 24 hours. An aircraft facing missile fire could unleash a swarm of drones, confusing attackers. The drones have a limited life of about twenty flights, allowing for inexpensive airframes that use existing technology. You can see a concept video from DARPA about how air-launched drones might play a role in future air combat below.

Continue reading “Gremlins Are Air To Air Drones”

Taking Killer Robots Seriously

Killer robots are a mainstay of science fiction. But unlike teleportation and flying cars, they are something that we are likely to see within our lifetime. The only thing that’s stopping countries like the USA, South Korea, the UK, or France from deploying autonomous killing machine in the very near term is that they’re likely to be illegal under current international humanitarian law (IHL) — the rules of war.

But if you just sighed in relief that the fate of humanity is safe, think again. The reason that autonomous killing machines are illegal is essentially a technicality, and worse, it’s a technicality that’s based on the current state of technology. The short version of the story, as it stands right now, is that the only thing making autonomous robotic killing weapons illegal is that it’s difficult for a robot to tell a friend from an enemy. When technology catches up with human judgement, all bets are off.

Think I’m insane? The United Nations Office at Geneva (UNOG), the folks who bring you the rules of warfare, started up a working group on killer robots three years ago, and the report from their 2016 meeting just came out. Now’s as good a time as any to start taking killer robots seriously.

Continue reading “Taking Killer Robots Seriously”

Master’s UAV Project Takes Flight

Pushing the maker envelope all the way to the Master level, [Przemyslaw Brudny], [Marek Ulita], and [Maciej Olejnik] from the Politechnika Wroclawska in Poland packed a UAV full of custom sensor boards for their thesis project.

The Skywalker X-8 FPV drone underwent extensive modifications to accommodate the embedded systems as well as upgrading the chassis with carbon glass to withstand the high load and speeds they would need to perform their tests. The ailerons were customized for finer control of the drone. But for our money, it’s all the board design that supports those sensors which is really fun to delve into.

Continue reading “Master’s UAV Project Takes Flight”

Greased Lightning Shows 360 Degrees

A lot of people got drones for Christmas this year (and many Hackaday readers already had one, anyway). A lot of these drones have cameras on them. The expensive ones beam back live video via RF. The cheaper ones just record to an SD card that you can download later.

If you are NASA, of course, this just isn’t good enough. At the Langley Research Center in Virginia, they’ve been building the Greased Lightning (also known as the GL-10) which is a 10-engine tilt-prop unmanned aerial vehicle. The carbon fiber drone is impressive, sure, but what wows is the recent video NASA released (see below).

Continue reading “Greased Lightning Shows 360 Degrees”