THP Entry: Cut Energy Consumption by 30 percent with this WiFi XBee Setup

5277901405891974757

Let’s be honest. Paying electricity bills sucks. The amount paid is always too much, and the temperatures in the building are rarely set at a comfortable level. But now, with the help of this DIY Climate Control system, power-users can finally rejoice knowing that the heating and cooling process of their home (or commercial space) can be easily controlled through the utilization of an XBee Remote Kit and a process called zoning.

The team behind the project is [Doug], [Benjamin] and [Lucas]. They hope to solve the inconsistent temperature problems, which are caused by a moving sun, by open-sourcing their work into the community.

Their XBee system runs on a mesh network making it a perfect tool for sensing and communicating which areas in the house are too hot or too cold. Once the data is collected, XBee modules route the information wirelessly to each other until it reaches a central Arduino gatekeeper; which then decides if it wants to heat, ventilate, or air condition the room.

Not to mention all the added benefits posted below:

[Read more...]

Remote control with an XBee and a Propeller

If you’ve been playing with electronics for long enough, eventually you’ll need a nice remote control transmitter to control your RC car, airplane, or any other robotics project you have lying around. With these robotics projects comes the problem remote control, and the XBee Handheld Controller may be just the ticket to remotely control any project that comes off your workbench.

This isn’t the first remote controller we’ve seen that does just about everything, but it is the first one to include an XBee wireless transceiver to easily interface to your robotics project. The controller comes in two models, the Q4, which uses four Playstation-like joysticks, and the Q2, which uses proper remote control gimbal joysticks. Both the controllers have a slew of buttons, toggle switches, four rotary pots and a 2×20 LCD display.

After the break you can check out [Paul]‘s pitch explaining what these controllers can do and showing off a hexapod robot under the control of his Q4 controller. A very neat project, and we can’t wait to see this controller out in the field.

[Read more...]

Kilonode: how to test a huge Xbee mesh network

So let’s say that you’re a developer on the Xbee team. You need to test the extremes of what the RF radio modules can do when in a large network. But in addition to numerous nodes, you also need to test the effects of distance on the radios. Since it’s not reasonable to distribute hundreds of the devices (each with their own power source) throughout town, you build a test setup like the 1 kilonode Xbee rig which the project manager, [Jared Hofhiens] is showing off.

He’s holding one blade from the rack-mounted system. Each of those squares is an Xbee module, there’s 32 etched onto the board. On the edge furthest from him there are a set of connectors which mate with the rack connectors, hooking the blade up to a set of terminal servers. These servers allow developers to ssh into individual modules. On the near side of the blade there’s a set of attenuation adjustment circuits. They allow adjustments of 0-40 dB of attenuation in 10 dB increments to adjust how strong the RF signals are, simulating distance between modules.

Thirty-two of these cards are mounted in the three racks seen above to make up the 1024 module node. We really appreciate this look behind the scenes and think you’ll enjoy the video tour after the break. If it leaves you wanting more check out how one company builds cloud storage. [Read more...]

Directly interfacing a joystick with an Xbee

We see a pretty steady stream of projects that use Xbee modules. They’re one of the more reliable and popular ways to add a wireless aspect to your project. But we don’t often see them used to their full potential. Since there’s a microcontroller onboard, many simple tasks can be accomplished without the need for an addition microcontroller. [Stephen's] showing how this can be done, by reading the stick and button data from a game controller using only an Xbee module.

His test setup uses an Arduino to drive servo motors on the receiving end of the hardware. You can’t do everything with Xbee, but the sender is where this concept comes into play. [Stephen] grabbed an older gamepad which is meant for use with a PC game port. The joystick uses potentiometers to measure position data, and the buttons simply complete a circuit. He altered the joystick by adding voltage dividers to the pots, and pull-up resistors to the buttons. From there he just wired it up to the Xbee and set up the module’s firmware to package and transmit the data. It’s a nice way to do more with less.

We had a little discussion here at Hackaday about Xbee modules which seem to be in short supply. Some of us think it’s due to the flooding in Thailand. If you’ve got some info on the situation, or just want to share your own conspiracy theory, let us know in the comments.

Xbee Wireless Servo Control

Servo control is good, but wireless control is even better. This hack by [PyroElectro Tutorials] shows you how to do this wirelessly using two Xbee modules. There’s also a great example in the video after the break of this “hacking platform” used to control an animatronic head’s eyes. (we’ve featured the eyes here before).

In this control scheme, communication is one way only. An Xbee module is used as the transmitter, and the other as the receiver. The tutorial does a great job of explaining the parts used and gives links for purchasing the components if needed. It even goes over some very basic servo theory and gives schematics as well as assembly pictures. Transmitter and receiver firmware files are also available to download, so there’s nothing keeping you from trying it! Join us after the break to see the working example.

[Read more...]

Xbee remote sensors tell you when someone enters your home

[Bill Porter] is helping a friend out by designing a simple security system for her home. It relies on Xbee modules to alert a base station when doors are opened, or a pressure mat is stepped on.

The door sensors are quite simple, and you’re probably already familiar with them. One part mounts to the door and has a magnet in it, the mating part mounts to the jamb and has a reed switch that closes a contact when the magnet is in place. The floor mat uses two sheets of conductive material separated by bits of foam. When it is stepped on a circuit is completed and can be sensed by the Xbee as a button press.

These sensors report back to an Arduino base station that has a buzzer and three 8×8 LED modules to scroll a message saying which sensor was tripped. [Bill] does a good job of showing what goes into configuring an Xbee network if you’ve never worked with the hardware before.

You’ll find his demo video after the break.

[Read more...]

Xbee controlled, granite-wrapped clock travels into future

From the looks of it this clock is a couple of months ahead of its time. [Oscar] built the clock (translated) taking time to add a lot of goodies into the mix. First up, the parts you see include six large 7-segment displays for hours, minutes, and seconds as well as an LED marquee which can scroll messages. Inside there’s a temperature and humidity sensor for environmental feedback, and an Xbee module which allows for wireless computer control. Time is kept by a DS1307 real-time clock, which is read by an Arduino Uno, then pushed to the display by the pair of I2C addressable SAA1064 drivers. The whole thing was enclosed in four sheets of granite for the box, and a pane of glass for the front. We sure hope it’s well anchored to that wall. You can see it ticking away after the break.

[Read more...]

Follow

Get every new post delivered to your Inbox.

Join 94,439 other followers