5K IMac Turned Into 5K Display

While Apple weren’t the first to invent high-DPI displays or to put them into consumer electronics, they did popularize them fairly effectively with the Retina displays in the early 2010s and made a huge number of them in the following years. The computers they’re attached to are getting up there in age, though, and although these displays are still functional it isn’t quite as straightforward to use them outside of their Apple-approved use. [David] demonstrates one way of getting this done by turning a 5k iMac into an external monitor.

The first attempt at getting a usable monitor from the old iMac was something called a Luna Display, but this didn’t have a satisfying latency. Instead, [David] turned to replacing the LCD driver board with a model called the R1811. This one had a number of problems including uneven backlighting, so he tried a second, less expensive board called the T18. This one only has 8-bit color instead of the 10-bit supported by the R1811 but [David] couldn’t personally tell the difference, and since it solved the other issues with the R1811 he went with this one. After mounting the new driver board and routing all of the wires, he also replaced the webcam with an external Logitech model and upgraded the speakers as well.

Even when counting the costs for both driver boards, the bill for this conversion comes in well under the cost of a new monitor of comparable quality from Apple, a company less concerned about innovation these days than overcharging their (admittedly willing) customers. For just a bit of effort, though, these older iMacs and other similar Apple machines with 5k displays can be repurposed to something relatively modern and still usable. Others have done similar projects and funded the upgrades by selling off the old parts.

A small white work truck sitting on a faded road with trees in the background. In its bed is what looks like an enormous drill battery in an upside down position. The "battery" is black with red and yellow stripes. It has the words "125V, 500 Ah, 52 kWh" and "Mr. G's Workshop" emblazoned on the side.

Kei Truck Looks Like A Giant Power Tool

Kei trucks are very versatile vehicles, but their stock powerplant can leave a bit to be desired. If you need more power, why not try an electric conversion?

[Ron “Mr. G” Grosinger] is a high school auto shop and welding teacher who worked with his students to replace the 40 hp gas motor in this Daihatsu Hijet with the 127 hp of a Hyper 9 electric motor. The motor sits in the original engine bay under the cab and is mated to the stock transmission with a custom adapter plate made from plate steel for less than $150. We really appreciate how they left all the electronics exposed to see what makes the conversion tick.

The faux battery was made by a foam sculptor friend out of urethane foam shaped with a carving knife and then painted. It slides on a set of unistrut trolleys and reveals the 5 salvaged Tesla battery modules that power the vehicle. The fold down sides of the truck bed allow easy access to anything not already exposed if any tweaking is necessary.

We’ve seen a kei truck become a camper as well or an ebike powered with actual power tool batteries. If you’re thinking of your own electric conversion, which battery is best?

Continue reading “Kei Truck Looks Like A Giant Power Tool”

FLOSS Weekly Episode 863: Opencast: That Code Is There For A Reason

This week Jonathan chats with Olaf Andreas Schulte and Lars Kiesow about Opencast, the video management system for education. What does Opencast let a school or university accomplish, how has that changed over the last decade, and what exciting new things are coming? Watch to find out!

Continue reading “FLOSS Weekly Episode 863: Opencast: That Code Is There For A Reason”

Illustrated Kristina with an IBM Model M keyboard floating between her hands.

Keebin’ With Kristina: The One With The RollerMouse Keyboard

I just love it when y’all send in your projects, so thanks, [Kai]! But were do I even begin with this one? Okay, so, first of all, you need to know that [Kai Ruhl] built an amazing split keyboard with plenty of keys for even someone like me. Be sure to check it out, because the build log is great reading.

A lovely split keyboard on a pair of rails that doubles as a mouse.
Image by [Kai Ruhl] via Land of Kain
But that wasn’t enough — a mousing solution was in order that didn’t require taking [Kai]’s hands off of the keyboard. And so, over the course of several months, the RollerMouse Keyboard came into being. That’s the creation you see here.

Essentially, this is an ortholinear split with a built-in roller bar mouse, which basically acts like a cylindrical trackball. There’s an outer pipe that slides left/right and rolls up and down, and this sits on a stationary inner rod. The actual mouse bit is from a Logitech M-BJ69 optical number.

[Kai] found it unpleasant to work the roller bar using thumbs, so mousing is done via the palm rests. You may find it somewhat unpolished with all that exposed wiring in the middle. But I don’t. I just worry about dust is all. And like, wires getting ripped out accidentally.

Continue reading “Keebin’ With Kristina: The One With The RollerMouse Keyboard”

A Keyboard For Anything, Without A Keyboard

There are many solutions for remote control keyboards, be they Bluetooth, infrared, or whatever else. Often they leave much to be desired, and come with distinctly underwhelming physical buttons. [konkop] has a solution to these woes we’ve not seen before, turning an ESP32-S3 into a USB HID keyboard with a web interface for typing and some physical keyboard macro buttons. Instead of typing on the thing, you connect to it via WiFi using your phone, tablet, or computer, and type into a web browser. Your typing is then relayed to the USB HID interface.

The full hardware and software for the design is in the GitHub repository. The macro buttons use Cherry MX keys, and are mapped by default to the common control sequences that most of us would find useful. The software uses Visual Studio Code, and PlatformIO.

We like this project, because it solves something we’ve all encountered at one time or another, and it does so in a novel way. Yes, typing on a smartphone screen can be just as annoying as doing so with a fiddly rubber keyboard, but at least many of us already have our smartphones to hand. Previous plug-in keyboard dongles haven’t reached this ease of use.

I, Integrated Circuit

In 1958, the American free-market economist Leonard E Read published his famous essay I, Pencil, in which he made his point about the interconnected nature of free market economics by following everything, and we mean Everything, that went into the manufacture of the humble writing instrument.

I thought about the essay last week when I wrote a piece about a new Chinese microcontroller with an integrated driver for small motors, because a commenter asked me why I was featuring a non-American part. As a Brit I remarked that it would look a bit silly were I were to only feature parts made in dear old Blighty — yes, we do still make some semiconductors! — and it made more sense to feature cool parts wherever I found them. But it left me musing about the nature of semiconductors, and whether it’s possible for any of them to truly only come from one country. So here follows a much more functional I, Chip than Read’s original, trying to work out just where your integrated circuit really comes from. It almost certainly takes great liberties with the details of the processes involved, but the countries of manufacture and extraction are accurate. Continue reading “I, Integrated Circuit”

Comparing A Clone Raspberry Pi Pico 2 With An Original One

Although [Thomas] really likes the Raspberry Pi Pico 2 and the RP2350 MCU, he absolutely, totally, really doesn’t like the micro-USB connector on it. Hence he jumped on the opportunity to source a Pico 2 clone board with the same MCU but with a USB-C connector from AliExpress. After receiving the new board, he set about comparing the two to see whether the clone board was worth it after all. In the accompanying video you can get even more details on why you should avoid this particular clone board.

In the video the respective components of both boards are analyzed and compared to see how they stack up. The worst issues with the clone Pico 2 board are an improper USB trace impedance at 130 Ω with also a cut ground plane below it that won’t do signal integrity any favors.

There is also an issue with the buck converter routing for the RP2350 with an unconnected pin (VREG_FB) despite the recommended layout in the RP2350 datasheet. Power supply issues continue with the used LN3440 DC-DC converter which can source 800 mA instead of the 1A of the Pico 2 version and performed rather poorly during load tests, with one board dying at 800 mA load.

Continue reading “Comparing A Clone Raspberry Pi Pico 2 With An Original One”