Jewelry Meets Carpentry with Bentwood Rings

[Dorkyducks] is a bit of a jeweler, a bit of a carpenter, and a bit of a hacker.  They’ve taken some time to document their technique for making bentwood rings. Bentwood is technique of wetting or steaming wood, then bending or forming it into new shapes. While the technique is centuries old, this version gets a bit of help from a modern heat source: The microwave oven. [Dorkyducks] starts with strips of veneer, either 1/36″ or 1/42″ thick. The veneer is cut into strips 1/2″ wide by about 12″ long, wrapped in a wet paper towel, and microwaved. The microwaveglue-roll heats the water in the towel, steaming it into the wood. This softens the wood fibers, making the entire strip flexible. The softened wood is then wrapped around a wooden preform dowel and allowed to dry for a day or two.

Once dry, the wood will hold the circular shape of the dowel. [Dorkyducks] then uses masking tape to tack the wood down to a new dowel which is the proper ring size for the wearer. Then it’s a superglue and wrapping game. The glue holds the laminated veneer together, and gives the ring it’s strength. From there it’s sanding, sanding, sanding. At this point, the ring can be shaped, and inlays added. [Dorkyducks] shows how to carve a ring and insert a gemstone in this gallery. The final finish is beeswax and walnut oil, though we’d probably go for something a bit longer lasting – like polyurethane.

Bespoke, Artisanal, Hand Made Executables

Programmers and software engineers will always use the latest development environments, the trendiest frameworks, and languages they learned only 21 days ago. What if this weren’t the case? What if developers put care into their craft and wrote programs with an old world charm? What if Windows executables were made with the same patience as artisanal firewood, or free range granola? [Steve] has done it. He’s forging a path into the wilds of truly hand crafted executables.

The simplest executable you could run on a Windows box is just a simple .COM file. This is an extremely simple file format that just contains code and data loaded into 0100h, and a jump to another point in the code. The DOS .EXE file format is slightly more complicated, but not by much. [Steve]’s goal was to build a proper Windows executable without a compiler, assembler, linker, or anything else.

Continue reading “Bespoke, Artisanal, Hand Made Executables”

Push Blood Pressure Data To The Cloud Via ESP8266

[Eduardo] contacted us about his success at connecting a blood pressure monitor to the web. He pulled this off by locating the chip responsible for storing the blood pressure data after being measured. It was a simple I2C EEPROM from which he dumped the data a sniffed communications with a 4 bit logic analyzer. [Eduardo] published all of his findings on that communication scheme so check out his post for more on that. The gist of it is that he implemented his reverse engineered protocol using an ESP8266, the ubiquitous cheap WiFi board that has become a go-to for web-connected anything like power monitors and underpowered but awesome server farms. Check out the Hackaday Dictionary entry for more on this board.

[Eduardo] is not the first on the scene with such a device, you can see a Withings device and a blipcare device available on Amazon. What this hack from [Eduardo] does provide is evidence of a much cheaper route for connecting vital medical data from a geographically distant, and perhaps technophobic family member. Lets take a walk down hypothetical lane, shall we? Uncle Bob in Albuquerque who doesn’t have any local family might be a good candidate for such a hacked device, everyone knows it’s like pulling teeth to get elderly family members to report some health information to loved ones… but with [Eduardo’s] hack it’s simple. Embed the hardware (assuming you know the login creds ahead of time) into a new BPM, send it to him as a gift, and Bob’s your uncle.

We haven’t seen too many blood pressure monitor hacks, but one entry from the Hackaday Prize dubbed “the pain machine” included monitoring the user’s blood pressure. We also covered an interesting hack on monitoring your heart rate with a piezo element.

A quick demo of [Edward’s] cuff is found below.

Continue reading “Push Blood Pressure Data To The Cloud Via ESP8266”

Homemade Soldering Station Does it Better

Soldering stations are probably one of the most important tools in the hacker’s arsenal. Problem is — good ones are expensive, and sometimes the only difference between being okay at soldering versus being great at it, is the quality of the tool you’re using! Which is why [Albert] and [Matthias] decided to make their very own home-made Weller clone.

Since the most important part of the soldering iron is a good tip, they’re using a needle from Weller — they just need to be able to control it. They designed a 3D printed housing (source files here) for a small 1.8″ LCD screen, an Arduino Pro Mini and a MOSFET shield, and the 12v 8A power supply they chose. There are only two controls — on/off, and a potentiometer for adjusting the temperature.

Continue reading “Homemade Soldering Station Does it Better”

Hackaday Links: October 11, 2015

[Kratz] just turned into a rock hound and has a bunch of rocks from Montana that need tumbling. This requires a rock tumbler, and why build a rock tumbler when you can just rip apart an old inkjet printer? It’s one of those builds that document themselves, with the only other necessary parts being a Pizza Hut thermos from the 80s and a bunch of grit.

Boot a Raspberry Pi from a USB stick. You can’t actually do that. On every Raspberry Pi, there needs to be a boot partition on the SD card. However, there’s no limitation on where the OS resides,  and [Jonathan] has all the steps to replicate this build spelled out.

Some guys in Norway built a 3D printer controller based on the BeagleBone. The Replicape is now in its second hardware revision, and they’re doing some interesting things this time around. The stepper drivers are the ‘quiet’ Trinamic chips, and there’s support for inductive sensors, more fans, and servo control.

Looking for one of those ‘router chipsets on a single board’? Here you go. It’s the NixCoreX1, and it’s pretty much a small WiFi router on a single board.

[Mowry] designed a synthesizer. This synth has four-voice polyphony, 12 waveforms, ADSR envelopes, a rudimentary sequencer, and fits inside an Altoids tin. The software is based on The Synth, but [Mowry] did come up with a pretty cool project here.

Video from Audio and Pure Data

Although graphical programming languages have been around for ages, they haven’t really seen much use outside of an educational setting. One of the few counterexamples of this is Pure Data, and Max MSP, visual programming languages that make music and video development as easy as dropping a few boxes down and drawing lines between them.

A few years ago, [Thomas] and [Danny] developed a very cool Pure Data audio-visual presentation. The program they developed only generated graphics, but though clever coding they were able to generate a few audio signals from whatever video was coming out of their computer. The project is called TVestroy, and it’s one of the coolest audio-visual presentations you’ll ever see.

The entire program is presented on three large screens and nine CRT televisions. With some extremely clever code and a black box of electronics, the video becomes the audio. Check it out below.

Although this is a relatively old build, [Thomas] thought it would be a good idea to revisit the project now. He’s open sourced most of the Pure Data files, and everything can be downloaded on the project page.

Continue reading “Video from Audio and Pure Data”

Amazon Giving Out (Sort Of) Hackable Amazon Dash Button

We’ve seen some interesting hacks of the Amazon Dash buttons, a neat device where you press a button and it orders a product from Amazon for you. Now, [Amazon] themselves are getting into the hacking fun with the AWS IoT Button. This is a Dash button that Amazon is giving out at events to promote their new Amazon Web Services (AWS) Internet of Things (IoT) service.

As part of their efforts to take over the world, the AWS IoT service allows you to create button-based services like ordering pizza or starting Netflix, but without running your own server. Instead, Amazon handles all of the hard stuff behind the scenes on their Lambda engine, which receives the small bit of JSON that the button sends and runs a Lambda function that orders pizza, kicks off Netflix, then starts World War III. Amazon provides sample actions for things like launching the missiles sending a text message over Twilio and writing to a database. Amazon isn’t selling these buttons: they only seem to be available as swag at events. Make a loud enough noise in the comments section and maybe they’ll allocate some for the Hackaday community.

Continue reading “Amazon Giving Out (Sort Of) Hackable Amazon Dash Button”