Random Robot Makes Random Art

For the price of a toothbrush and a small motor with an offset weight, a bristlebot is essentially the cheapest robot that can be built. The motor shakes the toothbrush and the bristle pattern allows the robot to move, albeit in a completely random pattern. While this might not seem like a true robot that can interact with its environment in any meaningful way, [scanlime] shows just how versatile this robot – which appears to only move randomly – can actually be used to make art in non-random ways.

Instead of using a single bristlebot for the project, three of them are built into one 3D printed flexible case where each are offset by 120°, and which can hold a pen in the opening in the center. This allows them to have some control on the robot’s direction of movement. From there, custom software attempts to wrangle the randomness of the bristlebot to produce a given image. Of course, as a bristlebot it is easily subjected to the whims of its external environment such as the leveling of the table and even the small force exerted by the power/communications tether.

With some iterations of the design such as modifying the arms and control systems, she has an interesting art-producing robot that is fairly reliable for its inherently random movements. For those who want to give something like this a try, the code for running the robot and CAD files for 3D printing the parts are all available on the project’s GitHub page. If you’re looking for other bristlebot-style robots that do more than wander around a desktop, be sure to take a look at this line-following bristlebot too.

Thanks to [johnowhitaker] for the tip!

Continue reading “Random Robot Makes Random Art”

Making Art With Keycap Bots

Robots come in all shapes and sizes, from remote landers on distant planets to assembly arms working hard in auto plants. Of course, the definition is broad and can contain more frivolous entities, too. [smdavee]’s watercoloring ‘bots may not be particularly complex or sentient, but they’re a fun creative build.

The design is akin to that of the BristleBot, with a pager vibration motor allowing the ‘bot to wobble about on unsteady feet. In this case, a keyboard cap is used, with cottontips inserted in the base to act as legs. These are then dipped in watercolor paints, and the attached motor is then switched on to vibrate the ‘bot around the page.

It’s an easy build, and one that would be particularly well-suited to teaching young children basic electronic concepts. Plus, there’s the added fun of getting to make a mess with watercolors, too. If you’ve got a fun art robot hiding away in your garage, be sure to let us know. Video after the break.

Continue reading “Making Art With Keycap Bots”

Ethanol-Powered Arduinos

Following the time-honored YouTube tradition of ordering cheap stuff online and playing with it while the camera runs, [Monta Elkins] bought a Stirling engine that drives a DC motor used as a generator. How much electrical juice can this thing provide, running on just denatured alcohol? (Will it blend?)

The answer is probably not really a spoiler: it generates enough to run “Blink.ino” on a stock Arduino, at least when powered directly through the 5 V rail. [Monta] recorded an open-circuit voltage of around 5 V, and a short-circuit current of around 100 mA at a measured few hundred millivolts. While he didn’t log enough of the points in-between to make a real power curve, we’re guessing the generator might be a better match for 3.3 V electronics. The real question is whether or not it can handle the peaky demands of an ESP8266. Serious questions, indeed!

The video is a tad long, but it’s more than made up for by the sight of an open flame vibro-botting itself across his desk while [Monta] is trying to cool the cold side down with a melting ice cube. Which got us thinking, naturally. If you just had two of the Stirling enginesContinue reading “Ethanol-Powered Arduinos”

3D Printed Bristle Bots (Robot Cockroaches!)

Bristlebots are one of our favorite projects to teach young hackers the basics of electronics. They’re easy to build, fun, and most importantly — cute. Usually you make them out of the head of an old toothbrush and a cellphone vibrating motor, but [Kevin Osborn] figured out a way to 3D print the entire thing!

He got the idea from [Mark Peeters] who figured out how to turn one of the disadvantages of FDM style printers, into a new way of producing more abstract 3D prints… He calls it the Drooloop method, and you can make some really cool 3D printed flowers with it! Basically, it means you design parts without support structures and design in a droop. If you do it right, you can create the bristles for your Bristlebot!

Continue reading “3D Printed Bristle Bots (Robot Cockroaches!)”

Hacklet 21 – Halloween Hacks Part 2

We asked, you listened! Last weeks Hacklet ended with a call for more Halloween themed projects on Hackaday.io. Some great hackers uploaded awesome projects, and this week’s Hacklet is all about featuring them. Every one of our featured projects was uploaded to Hackaday.io within the last 7 days.

masseffect2Mass Effect meets Daft Punk in [TwystNeko’s] 5-Day SpeedBuild Mass Effect Armor.  As the name implies, [TwystNeko] built the armor in just 5 days. Ethylene-vinyl acetate (EVA) foam was used to make most of the costume. Usually EVA foam needs to be sealed. To save time, [TwystNeko] skipped that step, and just brushed on some gold acrylic paint.  The actual cuts were based on an online template [TwystNeko] found. To top the armor off, [TwystNeko] used a custom built Daft Punk Guy Manuel helmet. Nice!

 

rat[Griff] wins for the creepiest project this week with Rat Bristlebot. Taking a page from the Evil Mad Scientist Labs book, [Griff] built a standard bristlebot based on a toothbrush and a vibrating pager motor. He topped off the bristlebot with a small rubber rat body from the party store. The rat did make the ‘bot move a bit slower, but it still was plenty entertaining for his son. [Griff] plans to use a CdS cell to make the rat appear to scamper when room lights are turned on. Scurrying rats will have us running for the hills for sure!

pumpkin[MagicWolfi] was created Pumpkin-O-Chain to light up Halloween around the house. This build was inspired by [Jeri Ellsworth’s] motion sensing barbot dress from 2011. Pumpkin-O-Chain uses the a similar RC delay line with 74HC14 inverters to make the LEDs switch on in sequence. He wanted the delay to be a bit longer than [Jeri’s] though, so he switched to 100K ohm resistors in this build. The result is a nice effect which is triggered when someone passes the PIR motion sensor.

pumpkinlite[Petri] got tired of his Jack-o’-lantern candles burning out, so he built his own Pumpkin Light. The light made its debut last year with a Teensy 2.0++ running the show. This year, [Petri] decided to go low power and switched to an MSP430 processor on one of TI’s launchpad boards. With plenty of outputs available on the Teensy and the MSP430, [Petri] figured he might as well use and RGB LED. The new improved Jack-o’-lantern can run for hours with no risk of fire.

We ccuth2an’t end this week without mentioning [Griff’s] updated Crochet Cthulhu Mask. We featured the mask in last week’s Hacklet, and called  [Griff] out for an update. Well, the final project is up, and it looks great! We’re sure [Griff’s] son will be raking in the candy this year!

It’s time for trick-or-treating, which means we have to end this episode of The Hacklet. As always, see you next week. Same hack time, same hack channel, bringing you the best of Hackaday.io!

[Lenore] Eviscerates Her Racing Snail

[youtube=https://www.youtube.com/watch?v=pzymwuPdQp4&w=580]

 

You may have walked past [Lenore’s] unassuming card table at Maker Faire this year. But we’re really glad we stopped for a little chat. She went so far as to pull the working parts out of her racing snail to show them to us!

Wait, wait… racing snail? Yeah, this is a pretty neat one from a few years ago. The snail is a relatively large version of a bristlebot (incidentally, we believe bristlebots were originated by EMSL). The thing that’s missing here are the bristles. Instead of using a scrub-brush for this large version, [Lenore] discovered that velvet has a somewhat uni-directional grain. But using a piece of mouse-pad cut to the same footprint as the velvet she was able to get the flat-footed snail to move in a forward direction purely through the jiggle of a vibrating motor.

If this sparked your interest there are tons of other bristlebot variations to be found around here. One of our favorites is still this abomination which shifts weight to add steering.

Battery Teardown To Get At The Cells Inside

Most of what people call batteries are actually cells. All of the common disposable alkaline batteries from AAA to D are single cells. The exception is the 9v battery which actually has six smaller cells inside of it. [Tom] took a look inside three different batteries to see what cells they’re hiding. Since he no longer uses the batteries for their intended purposes the individual cells may find a new life inside of one of his upcoming projects.

The six volt lantern battery on the left has four cells inside of it. This is no surprise since each zinc-carbon cell is rated for 1.5V. There’s not much that can be done with the internals since each cell is made of a carbon rod and zinc electrolyte ooze (rather than being sealed in their own packages).

Moving on to the rechargeable PP3 battery in the middle he finds the 8.4V unit is made up of seven 1.2V nickel-metal hydride cells. Many of them were shot, but we’d love to see one of the intact cells powering something small like a bristlebot.

The final component is an old laptop battery. Inside are an octet of Lithium Ion cells. The majority register 0V, but a few have 0.4V left on them. This is not surprising. We’ve seen power tool packs that have a few bad cells spoil the battery. It’s possible to resurrect a battery by combining good cells from two or more dead units.