The Demoscene, Now An Irreplaceable Piece Of Cultural Heritage

Break out your tuxedo or your evening gown, we’re going to take in some highbrow culture. A night at the opera perhaps, some Tchaikovsky from the symphony orchestra, or maybe a bit of Shakespeare? No, we’re going to a demo party, because the demoscene is the latest art form to be accepted as officially a part of the national cultural heritage of the Netherlands. This builds on successes adding the scene to the cultural heritage registers of Finland, Germany, and Poland, and should provide a boost to other bids in countries such as Switzerland and eventual UNESCO world acceptance.

It’s all very cool that one of our wider community’s art forms is at last being taken seriously rather than being dismissed by the establishment, because along with greater recognition comes other benefits. Sadly we don’t expect any cities to shell out for a demo auditorium next to the shiny new opera house any time soon, but we can see that it could be used to the benefit of for example a hackerspace chasing grants. meanwhile, feast your eyes on a bit of cultural heritage courtesy of the Dutch Centre For Intangible Cultural Heritage (Dutch language, English translation).

Not sure what the demo scene is? We’ve taken you to a demoparty before.

Header image: People Celebrating Evoke 2019 – Foto Darya Gulyamova

Minimal Mods Make Commodity LNBs Work For QO-100 Reception

A word of advice: If you see an old direct satellite TV dish put out to the curb, grab it before the trash collector does. Like microwave ovens, satellite dishes are an e-waste wonderland, and just throwing them away before taking out the good stuff would be a shame. And with dishes, the good stuff basically amounts to the bit at the end of the arm that contains the feedhorn and low-noise block downconverter (LNB).

But what does one do with such a thing once it’s harvested? Lots of stuff, including modifying it for use with the QO-100 geosynchronous satellite (German link). That’s what [Sebastian Westerhold] and [Celin Matlinski] did with a commodity LNB, although it seems more like something scored on the cheap from one of the usual sources rather than picking through trash. Either way, these LNBs are highly integrated devices that at built specifically for satellite TV use, but with just a little persuasion can be nudged into the K-band to receive the downlink signals from hams using QO-100 as a repeater.

The mods are simple — snipping out the 25 MHz reference crystal on the LNB board and replacing it with a simple LC bandpass filter. This allows the local oscillator on the LNB to be referenced to an external signal generator; when fed with a 25.78 MHz signal, it’s enough to goose the LNB up to 10,490 MHz — right about the downlink frequency. [Sebastian] and [Celin] tested the mods and found that it was easily able to detect the third harmonics of a 3.5-ish GHz signal.

As for testing on actual downlink signals from the satellite, that’ll have to wait. For now, if you’re interested in satellite comms, and you live on the third of the planet covered by QO-100, keep an eye out for those e-waste LNBs and get to work.

Building A Receiver With The ProgRock2 Programmable Crystal

Crystals are key to a lot of radio designs. They act as a stable frequency source and ensure you’re listening to (or transmitting on) exactly the right bit of the radio spectrum. [Q26] decided to use the ProgRock2 “programmable crystal” to build a receiver that could tune multiple frequencies without the usual traditional tuning circuitry. 

 The ProgRock2 is designed as a tiny PCB that can be dropped into a circuit to replace a traditional crystal. The oscillators onboard are programmable from 3.5KHz to 200 MHz, and can be GPS discliplined for accuracy. It’s programmable over a micro USB pot, and can be set to output 24 different frequencies, in eight banks of three. When a bank is selected, the three frequencies will be output on the Clock0, Clock1, and Clock2 pins.There was some confusion regarding the bank selection on the ProgRock2. It’s done by binary, with eight banks selected by grounding the BANK0, BANK1, and BANK2 pins. For example, grounding BANK2 and BANK0 would activate bank 5 (as 101 in binary equals 5). Once this was figured out, [Q26] was on top of things.

In his design, [Q26] hooked up the ProgRock2 into his receiver in place of the regular crystal. Frequency selection is performed by flipping three switches to select banks 0 to 7. It’s an easy way to flip between different frequencies accurately, and is of particular use for situations where you might only listen on a limited selection of amateur channels.

For precision use, we can definitely see the value of a “programmable crystal” oscillator like this. We’ve looked at the fate of some major crystal manufacturers before, too. Video after the break.

Continue reading “Building A Receiver With The ProgRock2 Programmable Crystal”

Is An ADS-B Receiver The Solution For Drone Pilots?

Over the years here at Hackaday, we’ve covered a range of stories about the ongoing panic surrounding drone flights. From plastic bags reported as drone incidents through to airports closed with no evidence of drones being involved, it’s clear that drone fliers are an embattled group facing a legal and aeronautical establishment that seems to understand little about them or their craft.

It sometimes seems to be a no-win situation for fliers, but perhaps [XJet] has something which might improve matters. He’s published a video showing off a portable ADS-B receiver which could be used by drone pilots to check for any aircraft in the vicinity and perhaps more importantly allow the drone community to take the moral high ground when problems occur.

The receiver isn’t particularly special, being a Raspberry Pi with LCD screen and an RTL-SDR receiver in a nice 3D printed enclosure. He says he’ll be publishing all software and build details in due course. But it’s the accessibility which makes it such a good idea, instead of being a very expensive safety device it’s a receiver that could probably be made with a less powerful Pi for under $100.

There is of course a flaw in the plan, that not all pilots are concerned enough for their safety to fit an ADS-B transponder to their aircraft, and so are invisible to both the thus-equipped drone pilot and air traffic control alike. This puts the onus on pilots to consider ADS-B an essential, but from the drone flier’s point of view we’d consider that a spotter should be part of their group anyway.

Curious what the fuss is about? Let us take you on a journey.

Continue reading “Is An ADS-B Receiver The Solution For Drone Pilots?”

Tiny Three-Tube Receiver Completes Spy Radio Suite

In our surface-mount age, it’s easy to be jaded about miniaturization. We pretty much expect every circuit to be dimensionally optimized, something that’s easy to do when SMDs that rival grains of sand are available. But dial the calendar back half a century or so and miniaturization was a much more challenging proposition.

Challenging, perhaps, but by no means unachievable, as [Helge Fyske (LA6NCA)] demonstrates with this ultra-compact regenerative vacuum tube receiver. It’s a companion to his recent “spy transmitter,” a two-tube radio built in — or on, really — an Altoids tin. The transmitter was actually a pretty simple circuit, just a crystal-controlled oscillator and an RF amplifier really, but still managed about 1.5 Watts output on the 80-meter ham band.

The receiver circuit ended up being much more complicated, as receivers do, and therefore harder to cram into the allotted space. [Helge]’s used a three-tube regenerative design, with one tube each devoted to the RF amp, detector/mixer, and audio amplifier stages. As in the transmitter, the receiver tubes are mounted on the outside of the box, with the inside crammed full of components. [Helge] had to be quite careful about component positioning, to prevent interstage coupling and other undesirable side effects of building in such close quarters.

Was it worth it? Judging by the video below, absolutely! We’ve rarely heard performance like that from even a modern receiver with all the bells and whistles, let alone from a homebrew design under such constraints. It sounds fantastic, and hats off to [Helge] for completing his spy radio suite in style.

Continue reading “Tiny Three-Tube Receiver Completes Spy Radio Suite”

Tennis Balls Serve As Decent Bicycle Tires That Don’t Easily Puncture

Pneumatic tires provide a great ride, great grip, and yet have one fatal flaw — they’re always getting punctured and leaving you stranded. [The Q] decided to solve this problem with a unique design: tires that use tennis balls as the cushioning medium instead.

The build begins with small cut sections of plastic water pipe. These are used as housings to hold tennis balls, which are pressed in with a unique tool of [The Q]’s own construction. The individual ball assemblies are then bolted into a standard bicycle wheel, and a tread from a regular bike tire is stretched around the outside for grip.

It goes without saying that these tires won’t offer the same quality of ride as regular pneumatic bike tires. Nor will the performance be as good, due to the significant extra unsprung weight. They are eye-catching and fun, however. Plus, if you live in an area with tons of nails or prickles, you might find these are just the ticket. Maybe.

We’ve seen some other great bike hacks before, too.

Continue reading “Tennis Balls Serve As Decent Bicycle Tires That Don’t Easily Puncture”

A metal watch is held in a man's fingers. The watchface has a laser etched chess board with miniature chess pieces made of brass enacting a match. The time is told on an etched chess clock to the right hand side of the timepiece and a small window on the rightmost "clock" shows the date.

A Little Chess With Your Timepiece

Some things remain classics, even after centuries, and chess and watches have certainly stood the test of time. [W&M Levsha] decided to combine them both in this “Chess Club” watch containing a miniature chess game frozen in time.

[W&M Levsha] used an off-the-shelf wristwatch for the mechanism and case, but rearranged the parts and built a custom watchface that’s much nicer than the original. The new watchface was cut and etched on a fiber laser after disassembly of the original watch.

The real magic happens when [W&M Levsha] turns those teeny little chess pieces on the lathe. The knight was a two piece affair with the horse head being laser cut out of brass sheet and then soldered onto a turned base. As you can see from the video embedded below, all of the chess pieces inside the watch could fit on the maker’s fingernail! It’s probably a good thing that this tiny set isn’t playable since trying to play on a board that size would be an exercise in patience.

We’ve seen machined chess sets here before at a larger scale, but if you’re more into 3D printing, how about teaching your printer to play?

Continue reading “A Little Chess With Your Timepiece”