Tasting Music, with a Side of Meatballs

Beatballs_Machine

Imagine eating food customized just for you based on your music preferences. This is exactly the premise behind a student-developed application called BeatBalls. This musical cooking platform translates artists and songs into delicious meatball recipes.

BeatBalls uses a computer algorithm that takes into account a variety of factors including key, tempo, cadence, and duration of the song to manifest a unique combination of ingredients. [Maria], who tipped us off about the project, told us in an email that Beatballs used the echonest API to determine elements of each song.

Anyone can go to the BeatBalls’ website and enter their favorite musician, group, or track into the online meatball generator, which outputs unique components to the screen. A few good suggestions are Meat Loaf, Led Zeppelin, Jimi Hendrix, and Bassnectar, which produce some delectable results.

Students involved in the project also created a machine to mix, roll, and cook the meatballs automatically. Team member [Samuel] told us that the system has three Arduino controllers that are hooked up to a remote server with an Ethernet shield and WiFi router. A set of servos and a DC motor controls the mechanisms that pushes the meat through and adds spices to the ingredients.

[Read more...]

Speedy Drinkmaker Keeps Party Guests Hydrated

the rumbot

After five weekends of work, [Alex] completed his automatic drink maker, the RumBot. What makes this automated bartender different from others is the fact that it is fast. VERY fast. It can serve drinks to five different locations in as little as 3 seconds per drink. By [Alex]‘s estimation, this could keep a party of 100 people going without anyone waiting on a drink.

The RumBot can make either of five pre-programmed drinks at varying levels of alcoholic intensity, ranging from 1 (“Virgin”) to 10. And for that extra push over the cliff, you can turn the knob to 11 (“Problem”).

Drink selection itself is handled by a simple digital I/O on an Arduino with a 1950s-styled user interface. The frame is built out of wood and uses 3D Printed plastic parts. It houses a very robust servo on a belt screw-driven stage to move the drink nozzle, and special sensors placed at either of the five drink locations detect a cup ready to be filled. Any cup placed at any of the positions will automatically be filled based on the RumBot’s settings at any particular time.

Based on the quality of the build and the increased speed of this automatic drink maker, this should be a huge hit at any party. With all the knobs turned to 11 though, it might be a good idea to have a breathalyzer on hand! All of the code and schematics for the project are available at the project site as well.

[Read more...]

Melting Chocolate – FOR SCIENCE!

The Ultimate Fondu Melting Pot

[Patrick Herd] was in Sweden recently and decided to help out a team of high school students in the International Young Physicist Tournament — The challenge? Chocolate Hysteresis.

Chocolate what? When chocolate melts, it doesn’t actually re-solidify at it’s melting point — in fact, it’s quite below that. The challenge here is figuring out a scientific way of measuring the time (and temperature) it takes to return to a solid state. This in itself is kind of tricky considering you have to accurately measure the temperature and be able to empirically tell if its solid or liquid.

The first scientific apparatus they came up with was the Chocolate Rig V1 – a very simple peltier heated and cooled calorimeter. They used an Arduino to control the temperature and a motor shield to power the peltier plate. It kind of worked but they discovered it was difficult to assess the physical state of the chocolate. This is when [Patrick] started doing some research and discovered rotary viscometry.

[Read more...]

IcenBerg. The Ice Cream Machine That Knocks

An Icecream Machine

It’s summer. It’s hot. After [Alex Shure] tried his hand at making his own ice cream, he knew he had to take it a step farther. Introducing icenBerg. He’s not just in the ice cream business. He’s building an empire.

Using various odds and ends from the workshop, an old mini fridge donated to him by friends, and a lathe, [Alex] built the first iteration of icenBerg. It features a fancy machined paddle inside the insulated housing, which can be driven by a power drill — or at least that was the plan…

The salvaged compressor system from the mini fridge provides the cooling for the machine. In his first attempt, he found a power drill wasn’t quite strong enough — so he ended up chucking the entire thing into his lathe for unbeatable ice cream mixing. The flavor of choice was apple banana coconut sorbet with chocolate oak cookie chunks and roasted soybeans (say that 10 times fast!).

The machine is far from complete, but as a proof of concept deliciousness it has spurred him to make it even better. He plans on making it a standalone unit using a windshield wiper motor, a PWM circuit with a microcontroller, and even hopes to correlate motor current to ice cream consistency.

Tread lightly.

Precision Temperatures for Cooking or Whatever

sous-vide temp controller

If you have not heard of the sous-vide method of cooking you are not alone. This method uses a low temperature water bath to cook food in airtight plastic bags. Because the temperatures are much lower than normal the cooking time must be much longer and the actual temperature is very critical. The advantage is that the food is heated evenly without overcooking the outside. Since the food is bagged, it also retains moisture.

[Brian] put together a sous-vide control system to automatically maintain the correct temperature of a rice cooker. A temperature control unit was sourced on eBay for about $15. This is not a bad deal considering it has an LED display, control buttons, built-in relay and thermometer input. The control unit is mounted inside a project box with a few other components. The 120 volt AC line comes into the box where the neutral and ground are connected to the control unit and a standard outlet. The hot wire is connected directly to the control unit which determines if the hot wire is or isn’t connected to the outlet by using its built-in relay.

[Read more...]

Barobot Serves Cocktails While Using Open Design the Right Way

barobot-mechanical-bartender

Oh for the day when we can stop repeatedly looking up our favorite drink recipes on Wikipedia. Those may be just around the corner and you’ll have your choice of single-click delivery or toiling away in the workshop for a scratch build. That’s because Barobot is satisfying both the consumer market and our thirst for open hardware goodness. They’re running a Kickstarter but to our delight, the software and mechanical design files are already posted. Before you dig into the design files there’s a really good look at the constituent parts in the assembly manual (PDF) — that’s a lot of pieces! — and a tiny bit on the tech-stuff page.

This remind us of the Drinkmo we saw earlier in the year. That one cames complete with the high-pitched whine of stepper motors. We didn’t get to hear Barobot’s ambient noise in the promo vid after the break. But one place this desing really shines is a swiveling caddy that allows for a double-row of bottles in a similar footprint. One thing we’d be interesting in finding out is the cleaning procedure. If anyone know what goes into cleaning something like this let us know in the comments.

[Read more...]

An Open Source Cortex-M0 Halogen Reflow Oven Controller With LCD

reflow oven controller

Homemade reflow ovens are a great inexpensive way to quickly solder multiple prototypes at once. [Andy] may just have built one of the best ones we’ve featured so far on Hackaday. For his project a £25 1300W 12litre halogen oven was chosen because of its low cost and fast heating time, the latter being required to follow typical reflow profile ramp-up stages.

To control the AC power [Andy] first bought a chinese Fotek Solid State Relay (SSR) on ebay, which was quickly replaced by an american one after reading concerning reports on the internet. He then made the same ‘mistake’ by buying the typical MAX6675 thermocouple-to-digital converter from the same website, as he spent much time understanding why the measurements were wrong when the IC was just defective. His final build is based around a 640×360 TFT LCD that he previously reverse engineered, the cortex-M0 STM32F051C8T7, a SPI flash, some power regulators and buttons. The firmware was written in C++ and we’ll let our readers visit [Andy]‘s page to see how well  his oven performs.

Follow

Get every new post delivered to your Inbox.

Join 93,754 other followers