Dead Simple Hack Allows for “Rebel” Keurig K-Cups

If you haven’t actually used a Keurig coffee machine, then you’ve probably at least seen one. They are supposed to make brewing coffee simple. You just take one of the Keurig “k-cups” and place it into the machine. The machine will punch a hole in the foil top and run the water through the k-cup. Your flavored beverage of choice comes out the other side. It’s a simple idea, run by a more complex machine. A machine that is complicated enough to have a security vulnerability.

Unfortunately newer versions of these machines have a sort of DRM, or lockout chip. In order to prevent unofficial k-cups from being manufactured and sold, the Keurig machines have a way to detect which cups are legitimate and which are counterfeit. It appears as though the machine identifies the lid specifically as being genuine.

It turns out this “lockout” technology is very simple to defeat. All one needs to do is cut the lid off of a legitimate Keurig k-cup and place it on top of your counterfeit cup. The system will read the real lid and allow you to brew to your heart’s content. A more convenient solution involves cutting off just the small portion of the lid that contains the Keurig logo. This then gets taped directly to the Keurig machine itself. This way you can still easily replace the cups without having to fuss with the extra lid every time.

It’s a simple hack, but it’s interesting to see that even coffee machines are being sold with limiting technology these days. This is the kind of stuff we would have joked about five or ten years ago. Yet here we are, with a coffee machine security vulnerability. Check out the video demonstration below. Continue reading “Dead Simple Hack Allows for “Rebel” Keurig K-Cups”

An Engineer’s Guide to Cooking the Perfect Turkey

It’s almost that special time of year again where we all get together and use our families as guinea pigs for new cooking techniques and untested recipes! Some of us are seasoned pros at preparing the big bird of tradition, while others are still experimenting year after year with hopes of nailing the optimal method by chance. [Travis Mikjaniec] approaches this culinary conundrum from an engineer (of aerodynamicist)’s perspective, with the goal of scientifically discerning through simulation the best method to prepare a Thanksgiving turkey; no long term trial and error required.

thermoTURKEY2

As the basics of cooking dictate, the rate at which the meat of a turkey will cook is determined by where the hot air is flowing and gathering inside the oven. Areas of the bird subjected to consistent fresh heat will cook faster and are more likely to dry out over time, so it’s important that the hot air is equally dispersed for an evenly cooked, juicy turkey. To figure out the trajectory of the air and the point where it begins to cool down, [Travis] modeled the naked bird in CAD, complete with the hallow cavity within. He then recreated the baking conditions to use in FloEFD, in this case a standard convection oven with a fan located in back. To compare cooking techniques against one another, he ran a series of streamline simulations with combinations of different cooking variables, like how high the bird was lifted off the baking sheet and whether or not the inner cavity had the added thermal mass of stuffing or not. These chaotic diagrams of simulated air flow helped visualize which conditions were conducive for even heating.

If you’re interested in knowing the verdict of [Travis’] trials with virtual turkeys, he offers thorough documentation on his investigative blog post. His insight might help improve your cooking game plan for Thanksgiving or teach you something you didn’t know about the aerodynamics of a fifteen pound headless bird… which is something you can talk about while sitting around the table.

Turkey Sous Vide

It’s time once again for Americans to gorge themselves on hormone-laced meats covered in several sauces and gravies, all of which inexplicably contain corn syrup. It’s also Thanksgiving this Thursday, so there’s that, too. If you have a turkey defrosting somewhere, you’ve probably gone over all your cooking options – the oven, a giant propane-heated pot of peanut oil, and yes, even sous vide. [Trey] over at TI came up with a great sous vide controller using a few LaunchPad Booster packs, and surprisingly, he can even cook a turkey.

The basic idea of sous vide is to vacuum pack your protein, put it in a closely-controlled water bath, and cook it so the inside is always the same temperature as the outside. It’s delicious, and it takes a long time. We can automate that, though.

[Trey] is using a USB LaunchPad and a thermocouple BoosterPack to monitor the temperature of a water bath. A custom SSR board is wired right into the heater, and a CC3100 provides a network connection to monitor the bird. While the network may seem a bit superfluous, it’s actually a great idea; sous vide takes hours, and you really don’t dote on your warm tub of water. Being able to receive SMS alerts from a sous vide controller is actually a great idea.

With everything wired up, [Trey] tried out his recipe for deep-fried turkey porchetta. From the pictures, it looks great and according to [Trey] it was the juiciest turkey he’s ever had.

Tasting Music, with a Side of Meatballs

Imagine eating food customized just for you based on your music preferences. This is exactly the premise behind a student-developed application called BeatBalls. This musical cooking platform translates artists and songs into delicious meatball recipes.

BeatBalls uses a computer algorithm that takes into account a variety of factors including key, tempo, cadence, and duration of the song to manifest a unique combination of ingredients. [Maria], who tipped us off about the project, told us in an email that Beatballs used the echonest API to determine elements of each song.

Anyone can go to the BeatBalls’ website and enter their favorite musician, group, or track into the online meatball generator, which outputs unique components to the screen. A few good suggestions are Meat Loaf, Led Zeppelin, Jimi Hendrix, and Bassnectar, which produce some delectable results.

Students involved in the project also created a machine to mix, roll, and cook the meatballs automatically. Team member [Samuel] told us that the system has three Arduino controllers that are hooked up to a remote server with an Ethernet shield and WiFi router. A set of servos and a DC motor controls the mechanisms that pushes the meat through and adds spices to the ingredients.

Continue reading “Tasting Music, with a Side of Meatballs”

Speedy Drinkmaker Keeps Party Guests Hydrated

the rumbot

After five weekends of work, [Alex] completed his automatic drink maker, the RumBot. What makes this automated bartender different from others is the fact that it is fast. VERY fast. It can serve drinks to five different locations in as little as 3 seconds per drink. By [Alex]’s estimation, this could keep a party of 100 people going without anyone waiting on a drink.

The RumBot can make either of five pre-programmed drinks at varying levels of alcoholic intensity, ranging from 1 (“Virgin”) to 10. And for that extra push over the cliff, you can turn the knob to 11 (“Problem”).

Drink selection itself is handled by a simple digital I/O on an Arduino with a 1950s-styled user interface. The frame is built out of wood and uses 3D Printed plastic parts. It houses a very robust servo on a belt screw-driven stage to move the drink nozzle, and special sensors placed at either of the five drink locations detect a cup ready to be filled. Any cup placed at any of the positions will automatically be filled based on the RumBot’s settings at any particular time.

Based on the quality of the build and the increased speed of this automatic drink maker, this should be a huge hit at any party. With all the knobs turned to 11 though, it might be a good idea to have a breathalyzer on hand! All of the code and schematics for the project are available at the project site as well.

Continue reading “Speedy Drinkmaker Keeps Party Guests Hydrated”

Melting Chocolate – FOR SCIENCE!

The Ultimate Fondu Melting Pot

[Patrick Herd] was in Sweden recently and decided to help out a team of high school students in the International Young Physicist Tournament — The challenge? Chocolate Hysteresis.

Chocolate what? When chocolate melts, it doesn’t actually re-solidify at it’s melting point — in fact, it’s quite below that. The challenge here is figuring out a scientific way of measuring the time (and temperature) it takes to return to a solid state. This in itself is kind of tricky considering you have to accurately measure the temperature and be able to empirically tell if its solid or liquid.

The first scientific apparatus they came up with was the Chocolate Rig V1 – a very simple peltier heated and cooled calorimeter. They used an Arduino to control the temperature and a motor shield to power the peltier plate. It kind of worked but they discovered it was difficult to assess the physical state of the chocolate. This is when [Patrick] started doing some research and discovered rotary viscometry.

Continue reading “Melting Chocolate – FOR SCIENCE!”

IcenBerg. The Ice Cream Machine That Knocks

An Icecream Machine

It’s summer. It’s hot. After [Alex Shure] tried his hand at making his own ice cream, he knew he had to take it a step farther. Introducing icenBerg. He’s not just in the ice cream business. He’s building an empire.

Using various odds and ends from the workshop, an old mini fridge donated to him by friends, and a lathe, [Alex] built the first iteration of icenBerg. It features a fancy machined paddle inside the insulated housing, which can be driven by a power drill — or at least that was the plan…

The salvaged compressor system from the mini fridge provides the cooling for the machine. In his first attempt, he found a power drill wasn’t quite strong enough — so he ended up chucking the entire thing into his lathe for unbeatable ice cream mixing. The flavor of choice was apple banana coconut sorbet with chocolate oak cookie chunks and roasted soybeans (say that 10 times fast!).

The machine is far from complete, but as a proof of concept deliciousness it has spurred him to make it even better. He plans on making it a standalone unit using a windshield wiper motor, a PWM circuit with a microcontroller, and even hopes to correlate motor current to ice cream consistency.

Tread lightly.