Retro-fit old radio with Arduino and FM module

“You can’t put new wine in old bottles” – so the saying goes. But you would if you’re a hacker stuck with a radio built in 2005, which looked like it was put together using technology from 1975. [Marcus Jenkins] did just that, pulling out the innards from his old radio and converting it to an Arduino FM radio.

His cheap, mains powered radio was pretty bad at tuning. It had trouble locating stations, and tended to drift. One look at the insides, and it was obvious that it was not well engineered at all, so any attempts at fixing it would be pointless. Instead, he drew up a simple schematic that used an Arduino Nano, an FM radio module based on the TEA5767, and an audio amplifier based on the LM386.

A single button on the Arduino helps cycle through a range of preset frequencies stored in memory. The Arduino connects to the FM radio module over I2C. The existing antenna was connected to the TEA5767 module. The radio module outputs stereo audio, but [Marcus] was content with using just a mono channel, as it would be used in his workshop. The audio amplifier is pretty straightforward, based on a typical application found in the data sheet. He put it all together on proto-board, although soldering the FM radio module was a bit tricky. The Arduino code is quite simple, and available for download (zip file).

He retained the original tuning knob, which is no longer functional. The AM-FM selector knob was fitted with a micro-switch connected to the Arduino for selecting the preset stations. Almost everything inside was held together with what [Marcus] calls “hot-snot” glue. The whole exercise cost him a few Euros, and parts scavenged from his parts bin. A good radio could probably be had for a few Euros from a yard sale and much less effort, but that wouldn’t be as cool as this.

Go deeper and explore how FM signals are modulated and demodulated for playback.

Easy Way To Listen To Cube Sats

[Bill Meara] has discovered an easy way to listen to amateur “cube-sat” satellites using a cheap SDR Dongle.

The DVB-T SDR Dongle comes in at a whopping thirteen bucks, and the highly sophisticated antenna (pdf) is made from a bit of copper wire and uses aluminum wire for the ground plane.

Once he had everything hooked up, [Bill] went to the Heavens Above website to see when satellites would be passing over him. He was able to lock onto the Prism Satellite, and then a couple other cube-sats that were launched from Russia and Istanbul.

Continue reading “Easy Way To Listen To Cube Sats”

The Alexanderson Transmitter: Very-low Frequency Radio Rides Again!

Is your ham radio rig made of iron and steel? Is it mechanically driven? Classified as a World Heritage Site? We didn’t think so. But if you’d like to tune in one that is, or if you’re just a ham radio geek in need of a bizarre challenge, don’t miss Alexanderson Day 2015 tomorrow, Sunday, June 28th

The Alexanderson Transmitter design dates back to around 1910, before any of the newfangled tube technology had been invented. Weighing in at around 50 tons, the monster powering the Varberg Radio Station is essentially a high-speed alternator — a generator that puts out 17.2 kHz instead of the 50-60 Hz  that the electric companies give us today.

Most of the challenge in receiving the Alexanderson transmitter broadcasts are due to this very low broadcast frequency; your antenna is not long enough. If you’re in Europe, it’s a lot easier because the station, SAQ, is located in Sweden. But given that the original purpose of these behemoths was transcontinental Morse code transmission, it only seems sporting to try to pick it up in the USA. East Coasters are well situated to give it a shot.

And of course, there’s an app for that. The original SAQrx VLF Receiver and the extended version both use your computer’s sound card and FFTs to extract the probably weak signal from the noise.

We scouted around the net for an antenna design and didn’t come up with anything more concrete than “few hundred turns of wire in a coil” plugged into the mic input.  If anyone has an optimized antenna design for this frequency, post up in the comments?

Thanks [Martin] for the tip!

Building your own SDR-based Passive Radar on a Shoestring

Let’s start off with proof. Below is an animation of a measurement of airplanes and meteors I made using a radar system that I built with a few simple easily available pieces of hardware: two $8 RTL software defined radio dongles that I bought on eBay, and two log-periodic antennas. And get this, the radar system you’re going to build works by listening for existing transmissions that bounce off the targets being measured!

I wrote about this in a very brief blog posting a few years ago. It was mainly intended as a zany little side story for our radio telescope blog, but it ended up raising a lot of interest. Because this has been a topic that keeps attracting inquiries, I’m going to explain how I did the experiment in more detail.

It will take a few posts to show how to build a radar capable of performing these types of measurements. This first part is the overview. In later postings I will go through more detailed block diagrams of the different parts of a passive radar system, provide example data, and give some Python scripts that can be used to perform passive radar signal processing. I’ll also go through strategies to determine that everything is working as expected. All of this may sound like a lot of effort, but don’t worry, making a passive radar isn’t too complicated.

Let’s get started!

Continue reading “Building your own SDR-based Passive Radar on a Shoestring”

The Biggest Day At Hamvention

We capped off day-2 of the Hamvention with an unexpected rain shower, and some arcing back in the hotel room.  Historically, Saturday is the best attended day of the show.  As normally, we spent most of the day outside in the flea market.  One of our friends allowed us to use his AN/GRC-9 army surplus radio to check into one of the nets.  The radio was powered by hand-crank.  Later, we attended a forum on the construction of HF antennas for camping trips, and obtained parts for our project back in the room. More about that later?  Overall, a great day.

Continue reading “The Biggest Day At Hamvention”

Hamvention Just Getting Started

For one weekend in May, the landscape of Dayton, Ohio is dominated by ham radio operators. The Dayton Hamvention (“ham-convention”), sponsored by the Dayton Amateur Radio Association, is the preeminent gathering of hams from around the world. This is where industry rolls out new products, friends gather to catch-up, and old equipment is “re-distributed” amongst willing parties in the sprawling swap meet which subsumes the entire Hara Arena parking lot where you can find almost anything and meet some of the most interesting people.

Continue reading “Hamvention Just Getting Started”

Inside The Amazon Dash Button

The Amazon Dash Button is a tiny WiFi-enabled device that’s a simple button with a logo on the front. If you get the Tide-branded version, simply press the button and a bottle of laundry detergent will show up at your door in a few days. Get the Huggies-branded version, and a box of diapers will show up. Get the sugar-free Haribo gummi bear-branded version, and horrible evil will be at your doorstep shortly.

[Matt] picked up one of these Dash Buttons for 99 cents, and since a button completely dedicated to buying detergent wasn’t a priority, he decided to tear it apart.

The FCC ID reveals the Amazon Dash Button is a WiFi device, despite rumors of it having a Bluetooth radio. It’s powered by a single AA battery, and [Matt] posted pictures of the entire board.

Since this piece of Amazon electronics is being sold for 99 cents, whatever WiFi radio chip is inside the Dash Button could be used for some very interesting applications. If you have an idea of what chips are being used in [Matt]’s pictures, leave a note in the comments.