Micro-Robots Are Scary Awesome

microrobots

A team of scientists at SRI international are creating real-life replicators from Star Gate SG1 — micro-robots capable of smart (and scary!) manufacturing. Thousands working in parallel will be able to achieve tasks previously unheard of, in a completely compact and integrated system.

These tiny ant-like robot systems are magnetically controlled and can use tools, move at incredible speeds, and swarm over surfaces. SRI’s vision was “to have an army of ants under your control”. It’s actually been an ongoing project since the 1990′s — but a recent undisclosed chunk of funding from DARPA has helped accelerate the project — giving it a new title of the MicroFactory for Macro Products project.

You have to see the video to believe it. Potential applications for these tiny swarm-bots include precise pick & place manufacturing, micro bio-technology, electronics manufacturing, and even rapid prototyping of high quality parts.

We get shivers just watching them slide around effortlessly on almost any surface.

[Read more...]

PenguinBot Follows Light, Goes Screech in the Night

The Arduino Based Penguin Robot
Ever have one of those weekend projects that takes on a life of its own? [Michael] did, and the result is this PenguinBot. While [Michael's] wife was away for the weekend he happened upon a broken toy penguin. The batteries had leaked inside, destroying the contacts. Rather than bin the toy, [Michael] made it awesome by turning it into an autonomous robot. [Michael's] goal was to create a robot that could roam around the house avoiding obstacles, or follow a light source like a flashlight.

He started by pulling out most of the original electronics. Two dollar store toy trains gave their lives and their motors to replace the penguin’s original drive system. An Arduino Pro Mini became PenguinBot’s brain. Sensors consisted of two light sensing CdS cells, an AdaFruit sound sensor, and a MaxBotix ultrasonic sensor. With the ultrasonic sensor mounted on a servo, it can detect obstacles in any direction. The CdS cells and some software will allow PenguinBot to follow lights, like any good photovore robot should.

Click past the break to see PenguinBot in action

[Read more...]

MountainBeest – A Theo Jansen Creature Comes Alive in My Garage

About a year ago, a member of my family sent me a video featuring [Theo Jansen's] StrandBeest, knowing that I was interested in all kinds of wacky and hackish inventions. My initial reaction was something to the effect of “wow that’s a neat device, but that guy is a little crazy.” For better or worse, the idea that this was an incredible invention turned over in my head for some time. Eventually, I decided that I needed to build one myself.  Apparently I’m a little crazy as well.

Theo’s original beest runs on a complicated linkage system powered by wind. He was nice enough to publish the linkage lengths or “eleven holy numbers,” as he calls him at the bottom of this page. He doesn’t, however, really explain how the connections on his PVC power transmission system work, so I was left to try to figure it out from his videos.  As you’ll see from build details and video to follow, this isn’t trivial. Keep reading past the jump to learn the adversity that I encountered, and how it was overcome in the end.

[Read more...]

DIY Linear Actuators For A Flight Sim

linear

[Roland] has already built a few very cool and extremely realistic flight sims, but his latest project will put his current rig to shame. He’s building a six degree of freedom simulator based on homebuilt linear actuators of his own design.

The actuator is powered by a large DC motor moving timing belts along the length of the enclosure. These timing belts are connected to a shaft that’s coupled to the frame with a few bungee cords. The bungee cords are important; without them, the timing belts would be carrying all the load of the sim – not a good thing if these actuators are moving an entire cockpit around a living room.

Also on [Roland]‘s list of awesome stuff he’s building for his flight sims is a vibration system based on the BFF Shaker. This board takes data in from sim software and turns it into vibrations produced by either unbalanced DC motors or one of those ‘bass kicker’ transducers.

It’s all very cool stuff, and with all the crazy upgrades [Roland] is doing to his sim rig, he’s doing much better than paying $300/hour to rent a Beechcraft Baron.

[Read more...]

Never Lose Your Pencil With OSkAR on Patrol

OSkAR

[Courtney] has been hard at work on OSkAR, an OpenCV based speaking robot. OSkAR is [Courney's] capstone project (pdf link) at Shepherd University in West Virginia, USA. The goal is for OSkAR to be an assistive robot. OSkAR will navigate a typical home environment, reporting objects it finds through speech synthesis software.

To accomplish this, [Courtney]  started with a Beagle Bone Black and a Logitech C920 webcam. The robot’s body was built using LEGO Mindstorms NXT parts. This means that when not operating autonomously, OSkAR can be controlled via Bluetooth from an Android phone. On the software side, [Courtney] began with the stock Angstrom Linux distribution for the BBB. After running into video problems, she switched her desktop environment to Xfce.  OpenCV provides the machine vision system. [Courtney] created models for several objects for OSkAR to recognize.

Right now, OSkAR’s life consists of wandering around the room looking for pencils and door frames. When a pencil or door is found, OSkAR announces the object, and whether it is to his left or his right. It may sound like a rather boring life for a robot, but the semester isn’t over yet. [Courtney] is still hard at work creating more object models, which will expand OSkAR’s interests into new areas.

[Read more...]

Building a Quadcopter with a CNC Mill and a 3D Printer

Quadcopter

Quadcopters are a ton of fun to play with, and even more fun to build. [Vegard] wrote in to tell us about his amazing custom DIY quadcopter frame that uses a commercial flight control system.

Building a quadcopter is the perfect project to embark upon if you want to test out your new CNC mill and 3D printer. The mechanical systems are fairly simple, yet result in something unbelievably rewarding. With a total build time of 30 hours (including Sketchup modeling), the project is very manageable for weekend hackers. [Vegard's] post includes his build log as well as some hard learned lessons. There are also tons of pictures of the build. Be sure to read to read the end of the post, [Vegard] discusses why to “never trust a quadcopter” and other very useful information. See it in action after the break.

While the project was a great success, it sadly only had about 25 hours of flight-time before a fatal bird-strike resulted in quite a bit of damage. Have any of your quadcopters had a tragic run-in with another flying object? Let us know in the comments.

[Read more...]

Festo Creates Bionic Kangaroo; Steve Austin Unimpressed

 

festo-roo

[Dr. Wilfried Stoll] and a team at Festo have created an incredible robot kangaroo. Every few years the research teams at Festo release an amazing animal inspired robot. We last covered their smartbird. This year, they’ve created BionicKangaroo (pdf link). While The Six Million Dollar Man might suggest otherwise, Bionics is use of biological systems in engineering design. In this case, Festo’s engineers spent two years studying the jumping behavior of kangaroos as they perfected their creation.

Kangaroos have some amazing evolutionary adaptations for jumping. Their powerful Achilles tendon stores energy upon landing. This allows the kangaroo to increase its speed with each successive jump. The kangaroo’s tail is essential for balancing the animal as it leaps through the air. The Festo team used a thick rubber band to replicate the action of the tendons. The tail is controlled by electric servomotors.

Festo is known for their pneumatic components, so it’s no surprise that the kangaroo’s legs are driven by pneumatic cylinders. Pneumatics need an air supply though, so the team created two versions of the kangaroo. The first uses an on-board air compressor. The second uses a high-pressure storage tank to drive the kangaroo’s legs. An off the shelf Programmable Logic Controller (PLC) acts as BionicKangaroo’s brain. The PLC monitors balance while controlling the pneumatic leg cylinders and electric tail motors. Unfortunately, BionicKangaroo isn’t completely autonomous. The Thalmic Labs Myo makes a cameo appearance in the video. The Kangaroo’s human controller commands the robot with simple arm movements.

While the BionicKangaroo is graceful in its jumps, it still needs a bit of help when turning and taking simple steps. Thankfully we don’t think it will be boxing anytime soon.

[Read more...]