Mechatronic Cat Ears For The Rest Of Us

Every now and then you see a project that makes you smile. It may not be something that will deliver world peace or feed the hungry, but when it opens in your browser in the morning you go to work a bit happier for the experience.

Just such a project is [Radomir Dopieralski’s] set of wearable mechatronic cat ears. A cosplay accessory that moves as you do. Very kawaii, but fun.

You may have seen the commercially available Necomimi brainwave activated mechatronic ears. [Radomir’s] version does not share their sophistication, instead he’s using an accelerometer to detect head movement coupled to an Arduino Pro Mini driving a pari of servos which manipulate the ears. He provides the source code, and has plans for a miniaturised version using an ATtiny85 on its own PCB.

Amusing cuteness aside, there are some considerations [Radomir] has had to observe that apply to any a head-mounted wearable computer. Not least the problem of putting the Pro Mini and its battery somewhere a little more unobtrusive and weatherproof than on top of his head. He also found that the micro-servos he was using did not have enough range of movement to fully bend the ears, something he is likely to address in a future version with bigger servos. He’s yet to address a particularly thorny problem: that a pair of servos mounted on your head can be rather noisy.

We’ve covered quite a few cosplay stories over the years. This is not even our first cat ear story. More than one example of a Pip Boy, a HAL 9000 costume, and a beautifully made Wheatley puppet have made these pages, to name a few. So scroll down and enjoy [Radomir’s] video demonstration of the ears in action.

Continue reading “Mechatronic Cat Ears For The Rest Of Us”

Remote-Controlled Eyebrows for Your Birthday

We’re not sure that [Alec]’s dad actually requested remote-controlled eyebrows for his birthday, but it looks like it’s what he got! As [Alec] points out, his father does have very expressive eyebrows, and who knows, he could be tired of raising and lowering them by himself. So maybe this is a good thing? But to us, it still looks a tiny bit Clockwork Orange. But we’re not here to pass judgement or discuss matters of free will. On to the project. (And the video, below the break.)

20160208_105209

An ATmega328 (otherwise known as cheap Cloneduino Alec wrote that the 328 was from a real Arduino) is trained to run motors in response to IR signals. An L293D and a couple of gear motors take care of the rest. Sewing bobbins and thread connect the motors to the eyebrows. And while it’s not entirely visible in the photo, and veers back into not-sure-we’d-do-this-at-home, a toothpick serves as an anchor for the thread and tape, secured just underneath the ‘brows for maximum traction.

We have to say, we initially thought it was going to be a high-voltage muscle-control hack, and we were relieved that it wasn’t.

Continue reading “Remote-Controlled Eyebrows for Your Birthday”

Darth Vader Magic 8 Ball

Imagine that your wife likes Darth Vader and wants help making important life choices. (Who doesn’t?) [bithead942] solves both problems in one project by gutting a Lego clock and making a talking animatronic Darth Vader 8-Ball-style oracle. Now his wife can simply press Darth’s head and her decision-making is handled by the Dark Side of the Force.

You can see the result in the video below the break.

The internals consist mainly of an Arduino Nano, a WTV020SD WAV playback chip, and some swanky servos. [bithead942] took a Dremel to the existing clock interior and found a way to make it all fit. The cloak helped, and the speaker was a good fit for the previous clock’s display.

Then he used IMDB and combed through the Star Wars movies to find Darth Vader quotes that kinda sound like the 8-Ball’s answers. As [bithead942] mentions Darth Vader doesn’t really dwell much on the positive, so finding instances where he says “yes” was hard work. This is in contrast to the original 8 Ball which has a brighter outlook than a cheerleader on Prozac, but there’s a reason they call it the Dark Side.

We really like the way the waist and arm servos work together to bring Darth to life. The added oak base with pull-out instruction card not only makes Darth look fancy, but prevents him from falling over when he leans forward to talk. All in all, a really nice build and well written-up with difficulties and their solutions.

Continue reading “Darth Vader Magic 8 Ball”

Ask Hackaday: Who is Going to Build This Pneumatic Transmission Thing?

fluid_transmission

Disney research is doing what they do best, building really cool stuff for Disney and telling the rest of the world how cool they are. This time, it’s a very low friction fluid transmission device designed for animatronics.

From testing a few toy robotic arms, we can say without a doubt that servos and motors are not the way to go if you’re designing robots and animatronics that need lifelike motion. To fix this, a few researchers at Disney Pittsburgh have turned to pneumatics and hydraulics, where one joint is controlled by two sets of pistons. It’s extremely similar to the pneumatic LEGO, but more precise and much more lifelike.

The system uses a pair of cylinders on each joint of a robot. Disney is using a rolling diaphragm to seal the working fluid in its tubes and cylinders. This is an extremely low-friction device without any shakiness or jitters found with simple o-ring pneumatics and hydraulics.

The system is backdriveable, meaning one robotic arm can control another, and the other way around. Since we’re dealing with hydraulics, the cylinders (and robotic/animatronic devices) don’t need to be the same size; a small device could easily control a larger copy of itself, and vice versa.

The devices are fairly simple, with gears, toothed belts, and bits of plastic between them. The only unique part of these robots is the rolling diaphragm, and we have no idea where to source this. It looks like it would be great for some robotics or an Iron Man-esque mech suit, but being able to source the components will be a challenge.

You can check out the videos of these devices below, and if you have any idea on how to build your own, leave a note in the comments.

Continue reading “Ask Hackaday: Who is Going to Build This Pneumatic Transmission Thing?”

Roboceratops: A Robot Dinosaur That Defies Extinction

roboceratopsInspired by a childhood love of dinosaurs, [Robert] set out to build a robotic dinosaur from the Ceratopsian family. After about a year of design, building, and coding, he has sent us a video of Roboceratops moving around gracefully, chomping a rope, and smoothly wagging his tail.

Roboceratops is made from laser-cut MDF and aluminium bars in the legs. That’s not cookie dough on those legs, it’s upholstery foam, and we love the way [Robert] has shaped it. Roboceratops has servos in his jaw, neck, tail, and legs for a total of 14-DOF. You can see the servo specifics and more in the video description. [Robert] has full kinematic control of him through a custom controller and is working to achieve total quadrupedal locomotion.

Inside that custom controller is an Arduino Mega 2560, an LCD, and two 3-axis analog joysticks that control translation, height, yaw, pitch, and jaw articulation. For now, Roboceratops receives power and serial control through a tether, but [Robert] plans to add an on-board µC for autonomous movement as well as wireless, a battery, an IMU, and perhaps some pressure/contact detection in his feet.

The cherry on top of this build is the matching, latching custom carry case that has drawers to hold the controller, power supply, cable, tools, and spare parts. Check out Roboceratops after the break.

Continue reading “Roboceratops: A Robot Dinosaur That Defies Extinction”

Manuel the Scottish moose speaks your tweets

tod1

The folks over at Torchbox needed a Christmas card this year. Previously, the most poplar holiday card was a web page that gave their visitors a chance to activate a ‘snow machine’ and spray confetti on a random employee, all while being streamed online. They wanted to replicate this bridge between virtual and real life interactions this year, and Manuel the talking moose was born.

Manuel needed a personality and interaction from random people on the Internet so the Torchbox team decided to make the fake moose head speak tweets in real-time with the help of a Raspberry Pi. The code running on the Raspi gets tweets with a #tbxmoose hashtag, sends that through a node.js script, and finally sent to the Festival speech synthesis system.

A few modifications needed to be done to Manuel before he was presented to the Internet. His jaw was chopped in half and a servo and animatronic controller were added for a proper presentation on Torchbox’s stream of Manuel’s random musings.

A collection of hands to inspire your Halloween animatronics

Jump scares are a lot of fun, but if you want to hold the attention of all those trick-or-treaters we’d suggest a creepy prop. One of the best choices in that category is a ghoulishly lifelike hand. You can draw some inspiration from this roundup of robot hands which Adafruit put together.

We’ve chosen four examples for the image above but there are more to be had than just these. In the upper left there is a laser-cut acrylic hand that actually features some force sensitive resistors on the fingertips to help implement some haptic feedback. This project was inspired by the hand seen in the lower right which uses flex sensors on a glove to control the bot’s movement. If you’re looking for something more realistic the 3D printed parts on the lower left are the best bet. But if you’re looking to put something together by Halloween night the offering in the upper right is the way to go. It’s hacked together using cardboard templates to cut out plastic parts and using polymorph to form joints and brackets.