Wheelchair hack lets two-year-old explore on his own

wheelchair-pedal-controller

[Shea's] son [Alejandro] was born with Spinal Muscular Atrophy which limits his ability to move. The ability to explore one’s environment as a toddler is really important to development so [Shea] and his wife have been looking into assistive technology. Their health insurance paid for a medical stroller when he was nine-months old and has told the family they need to wait five years for a powered wheelchair. Rather than wait, [Shea] took it upon himself to hack a wheelchair his son could control.

He found a used adult-sized motorized wheelchair on eBay for about $800. Not cheap, but way more affordable than a brand new unit. This type of chair is made to be controlled with a joystick, an option not available to his son at this point. Foot control was an option if he could figure out how to build an interface.

After unsuccessfully trying to repair a broken digital kitchen scale [Shea] was inspired to reuse the sensors as pedal inputs. [Alejandro] has limited foot strength and the sensitive strain gauges are perfect for picking it up. Above you can see the sandal-based interface he built. The two feet working together affect steering as well as forward and reverse. The pedal system is connected to the wheelchair using a Digital to Analog converter chip to stand-in for the original analog joystick. After the break we’ve embedded a video of [Alejandro] exploring the outdoors in the finished chair.

In this case it’s fortunate that [Shea] has the skills to build something like this for his son. We hope this will inspire you to donate your time an know-how to help those in your own community who are in a similar situation. This really takes the concept of The Controller Project to the next level.

[Read more...]

PlayStation 3 controlled with head movement

head-movement-controlled-ps3

Our excitement just keeps building about how hackers can ply their skills to develop new adaptive technologies. Here’s another great example of custom control technology that helped [Steven] get back into gaming. The effects of muscular dystrophy have left him unable to use the stock PS3 controller. But after being paired up with [John Schimmel] he’s able to game again thanks to a head motion control system.

[John] looked at the way [Steven] interacts with the assistive technology at hand. He can drive his wheelchair with one finger, and interacts with his computer by moving his head. The computer detects a marker on the brim of his hat. [John] grabs input from the computer using Java and sends it to an Arduino board connected via USB. The Arduino has a USB Bit Whacker board letting it also connect to the PS3 as a controller. In the image above you can see the computer screen has a GUI for each of the controller’s buttons. [John] moves his head to select a control and clicks a button with his finger to actuate it.

If you like this check out some of the other assistive gaming hacks we’ve seen lately.

[via The Controller Project]

Adaptive technology used to fly an IR helicopter

adaptive-tech-controlled-helicopter

This gentleman is using electrical impulses from his neck muscles to fly a toy helicopter around the room. The project is a demonstration of the AsTeRICS project which seeks to reduce the complexity of adapting the set of skills a disabled person can use to do a wide range of functions. In this case, controlling the helicopter could easily be switched to other tasks without changing the user interface hardware.

One of the plugins for the AsTeRICS project uses the OpenEEG library. This reads the signals coming from a pair of electrodes on top of each shoulder. In the video after the break you can see that as he flexes these muscles the changes in signal are mapped to the altitude of the helicopter. This is just one example of a wide range of inputs that include things like building a webcam-based mouse or using  facial recognition.

The toy itself is being driven by an Arduino sending IR commands. We’ve seen quite a few project where the helicopter communications protocols are laid bare.

[Read more...]

Can a robot be a safe and cost-effective alternative to guide dogs?

[Tom Ladyman] is making the case that a robot can take the place of a guide dog. According to his presentation, guide dogs cost about £45,000 (around $70k) to train and their working life is only about six years. On the other hand, he believes that this robot can be put into service for about £1,000 (around $1500). The target group for the robots is blind and visually impaired people. This makes since, because the robot lacks a dog’s ability to assist in other ways (locating and returning items to their companion, etc.). The main need here is independent travel.

He starts with the base of an electric wheelchair — a time-tested and economy-of-scale platform. The robot navigates based on images from four downward facing cameras mounted on the pole seen above. The X on the top of the pole allows for a much wider range of sight. The robot identifies its companion via a tag on their shoe, but it’s got another trick up its sleeve. The cameras feed to a set of four BeagleBoards which work together to process them into a 3D map at about 12 FPS, allowing for obstacle avoidance.

Check out the video after the break for a bit more information. The 3D guidance system is also explained in detail at the link above.

[Read more...]

Sip-and-Puff Ipod dock highlights assistive technology

Check it out, a Sip-and-Puff Arduino shield. This is an assistive technology that allows the physically challenged to control things using a plastic air tube. Different combinations of sucking (Sip) or blowing (Puff) differentiate between control commands.

In this case the device is used to control an iPod dock, but [Bob Johnson's] Kickstarter project seeks to put the Sip-and-Puff functionality out there so that it can bridge the control gap no matter what the need. One example that he mentions in the video after the break is a Morse Code keyboard.

This shield uses a pressure sensor to receive input from the plastic tubing. But we’ve also seen it done using mechanical pressure switches. That technique is what was used in the Sip-and-Puff Kayak build.

[Read more...]

Dexterity enhancing guitar

[Justin Lange's] dad loves playing guitar, but an accident left him with nerve damage that makes it pretty much impossible these days. He just doesn’t have the dexterity needed to form the cords using his left hand. But his son’s hacking skills are helping him get back into it. [Justin] built a button-based add-on that forms the cords for him.

The build has two parts. A frame mounts over the finger board with slots for eighteen solenoids which push the strings down between the frets. These are controlled by the replacement finger board which is mounted below the neck. It has a double-row of buttons that let the player select the desired chord. One button chooses the key, with a second button acting as a modifier to switch to a seventh cord, or minor cord.

The project, which [Justin] has named folkBox, relies on a microcontroller. We spy an Arduino Mega in one of the build photographs but it will be interesting to see if the final project moves to a standalone chip. He’s set a goal for a more robust version of the build some time this summer.

[via Make]

Kinect-driven cart makes shopping a snap

wi_go

[Luis de Matos] is working on a neat Kinect project called Wi-GO that aims, as many do, to enhance the lives of individuals with disabilities. While the Wi-GO project is geared towards disabled persons, it can be quite helpful to the elderly and pregnant women as well.

Wi-GO is a motorized shopping cart with a Kinect sensor mounted on the back. The sensor interfaces with a laptop and functions much as you would as you would expect, scanning the area in front of the cart for objects and people. Once it identifies the individual it is meant to help, the cart diligently follows behind as the person goes about their typical shopping routine. The robot keeps a safe distance to avoid collisions, but remains within reach so that it can be used to carry goods.

If you take a look a the video below, you can see Wi-GO in action. It starts off by showing how difficult it would be for an individual in a wheel chair to use a shopping cart alone, and follows up by showing how much easier things are with Wi-GO in tow.

While the project is only in prototype form at the moment, we suspect that it will only be a matter of time until you see devices like Wi-GO in your local supermarket.

[Read more...]

Follow

Get every new post delivered to your Inbox.

Join 96,699 other followers