Wearable Robot Makes Mountain Climbing A Breeze For Seniors

You know, it’s just not fair. It seems that even if we stay active, age will eventually get the better of our muscles, robbing them of strength and our bodies of mobility. Canes and walkers do not provide additional strength, just support and reassurance in a treacherous landscape. What people could really benefit from are wearable robots that are able to compensate for a lack of muscle strength.

[Dr. Lee Jongwon] of the Korea Institute of Science and Technology has developed this very thing. MOONWALK-Omni is designed to “actively support leg strength in any direction”, and make one feel like they are walking on the moon. In order to test the wearable robot, [Dr. Jongwon] invited senior citizens to climb Korea’s Mount Yeongbong, which is some 604 meters (1980 feet) above sea level.

The robot weighs just 2 kg (about 4.5 lbs) and can be donned independently by the average adult in under ten seconds. There are four high-powered but ultra lightweight actuators on either side of the pelvis that aid balance and boost leg strength by up to 30%. This is all designed to increase propulsion.

An AI system works to analyze the wearer’s gait in real time in order to provide up-to-the-second effective muscle support in many different environments. One wearer, a formerly active mountain climber, reported feeling 10-20 years younger when reaching the top of Mount Yeongbong.

It’s quite interesting to see mobility robots outside of the simplicity of the rehabilitation setting. We have to wonder about the battery life. Will everyone over 65 be wearing these someday? We can only hope they become so affordable. In the meantime, here’s a wearable robot that travels all over your person for better telemetry.

Hackaday Links Column Banner

Hackaday Links: January 5, 2020

It looks like the third decade of the 21st century is off to a bit of a weird start, at least in the middle of the United States. There, for the past several weeks, mysterious squads of multicopters have taken to the night sky for reasons unknown. Witnesses on the ground report seeing both solo aircraft and packs of them, mostly just hovering in the night sky. In mid-December when the nightly airshow started, the drones seemed to be moving in a grid-search pattern, but that seems to have changed since then. These are not racing drones, nor are they DJI Mavics; witnesses report them to be 6′ (2 meters) in diameter and capable of staying aloft for 90 minutes. These are serious professional machines, not kiddies on a lark. So far, none of the usual government entities have taken responsibility for the flights, so speculation is all anyone has as to their nature. We’d like to imagine someone from our community will get out there with radio direction finding gear to locate the operators and get some answers.

We all know that water and electricity don’t mix terribly well, but thanks to the seminal work of White, Pinkman et al (2009), we also know that magnets and hard drives are a bad combination. But that didn’t stop Luigo Rizzo from using a magnet to recover data from a hard drive. He reports that the SATA drive had been in continuous use for more than 11 years when it failed to recover after a power outage. The spindle would turn but the heads wouldn’t move, despite several rounds of percussive maintenance. Reasoning that the moving coil head mechanism might need a magnetic jump-start, he probed the hard drive case with a magnetic parts holder until the head started moving again. He was then able to recover the data and retire the drive. Seems like a great tip to file away for a bad day.

It seems like we’re getting closer to a Star Trek future every day. No, we probably won’t get warp drives or transporters anytime soon, and if we’re lucky velour tunics and Spandex unitards won’t be making a fashion statement either. But we may get something like Dr. McCoy’s medical scanner thanks to work out of MIT using lasers to conduct a non-contact medical ultrasound study. Ultrasound exams usually require a transducer to send sound waves into the body and pick up the echoes from different structures, with the sound coupled to the body through an impedance-matching gel. The non-contact method uses pulsed IR lasers to penetrate the skin and interact with blood vessels. The pulses rapidly heat and expand the blood vessels, effectively turning them into ultrasonic transducers. The sound waves bounce off of other structures and head back to the surface, where they cause vibrations that can be detected by a second laser that’s essentially a sophisticated motion sensor. There’s still plenty of work to do to refine the technique, but it’s an exciting development in medical imaging.

And finally, it may actually be that the future is less Star Trek more WALL-E in the unlikely event that Segway’s new S-Pod personal vehicle becomes popular. The two-wheel self-balancing personal mobility device is somewhat like a sitting Segway, except that instead of leaning to steer it, the operator uses a joystick. Said to be inspired by the decidedly not Tyrannosaurus rex-proof “Gyrosphere” from Jurassic World, the vehicle tops out at 24 miles per hour (39 km/h). We’re not sure what potential market for these things would need performance like that – it seems a bit fast for the getting around the supermarket and a bit slow for keeping up with city traffic. So it’s a little puzzling, although it’s clearly easier to fully automate than a stand-up Segway.

Retractable Console Allows Wheelchair User To Get Up Close And Personal

[Rhonda] has multiple sclerosis (MS), a disease that limits her ability to walk and use her arms. She and the other residents of The Boston Home, an extended care facility for people with MS and other neuromuscular diseases, rely on their wheelchairs for mobility. [Rhonda]’s chair comes with a control console that swings out of the way to allow her to come up close to tables and counters, but she has problems applying enough force to manually position it.

Sadly, [Rhonda]’s insurance doesn’t cover a commercial solution to her problem. But The Boston Home has a fully equipped shop to extend and enhance residents’ wheelchairs, and they got together with students from MIT’s Principles and Practices of Assistive Technology (PPAT) course to hack a solution that’s not only useful for [Rhonda] but should be generally applicable to other chairs. The students analyzed the problem, measured the forces needed and the clearances required, and built a prototype pantograph mount for the control console. They’ve made the device simple to replicate and kept the BOM as inexpensive as possible since patients are often out-of-pocket for enhancements like these. The video below shows a little about the problem and the solution.

Wheelchair hacks are pretty common, like the 2015 Hackaday Prize-winning Eyedrivomatic. We’ve also covered totally open-source wheelchairs, both manual and electric.

Continue reading “Retractable Console Allows Wheelchair User To Get Up Close And Personal”

Hackaday Prize Entry: Touch Sensitive Power Supplies For EL Panels

[fool]’s entry in the Hackaday Prize competition is a modular and configurable lighting system the purpose of which is to assist seniors and others with limited mobility navigate safely at home. For [fool], this means the quiet steady hum of electroluminescent panels and wire. EL stuff is notoriously tricky to power, as it only operates on AC. The MoonLITE project is the answer to the problem of an easy to use EL power supply. The goal is to create a 5 watt, quiet, wearable EL power supply that outputs 100V at 100Hz.

One of the reasons why [fool] is interested in EL materials is that it can also turned into a touch sensor. This has obvious applications in lighting, and especially in assistive technologies. The MoonLITE project is based around [fool]’s Whoa Board that turns EL wires and panels into not only touch-sensitive lights, but also analog switches that can control basically anything. This unique capability of lighting doubling as a sensor offers the opportunity to make light-up EL grab bars for a senior’s bedside, for instance. He or she is going to be touching it anyway when getting up—why not add light as well as stability?

This is an especially cool project that brings something to the table we don’t really see much of. You can check out a video of the project below, complete with example of EL panels being used as buttons.

Continue reading “Hackaday Prize Entry: Touch Sensitive Power Supplies For EL Panels”

Hackaday Prize Entry: Remote Control By Head Gestures

Some people may think they’re having a bad day when they can’t find the TV remote. Yet there are some people who can’t even hold a remote, let alone root around in the couch cushions where the remote inevitably winds up. This entry in the Assistive Technologies phase of the 2017 Hackaday Prize seeks to help such folks, with a universal remote triggered by head gestures.

Mobility impairments can range from fine motor control issues to quadriplegia, and people who suffer from them are often cut off from technology by the inability to operate devices. [Cassio Batista] concentrated on controlling a TV for his project, but it’s easy to see how his method could interface with other IR remotes to achieve control over everything from alarm systems to windows and drapes. His open-source project uses a web cam to watch a user’s head gestures, and OpenCV running on a CHIP SBC looks for motion in the pitch, yaw, and roll axes to control volume, channel, and power. An Arduino takes care the IR commands to the TV. The prototype works well in the video below; with the power of OpenCV we can imagine mouth gestures and even eye blinks adding to the controller’s repertoire.

The Assistive Tech phase wraps up tomorrow, so be sure to get your entries in. You’ll have some stiff competition, like this robotic exoskeleton. But don’t let that discourage you.

Continue reading “Hackaday Prize Entry: Remote Control By Head Gestures”

Swedish Senior Rolls In Style With Hybrid Hoverboard Walker

You don’t have to know a word Swedish to understand that 86-year old [Lasse Thörn] is the coolaste modernaste pensionären in Gränna. All you have to do is see him rolling on his walker-assisted hoverboard and you’ve got the whole story.

Still, not knowing any Swedish and the spotty nature of Google translations makes it hard to discern the details of this build. Did [Lasse] build the folding aluminum bracket that connects the battery-powered hoverboard to his walker himself? We guess that he did, since another story says that he built a pedal boat back in the 1950s because he thought it sounded cool. He also says that he gets a lot of attention when he’s out on his contraption, and that other seniors have asked him to build one. [Lasse] says he’s too old to start a business; we don’t think he’s giving himself enough credit, but if he’s willing to leave the field of affordable personal mobility open to the rest of us, we say go for it.

We’ve seen lots of hoverboard builds lately, and lots of hate in the comments about the use of that term. Seems like the false advertising vibe grates on folks, but face it: “rolling wheelie board” is kind of awkward, and until technology catches up with the laws of physics, it’s the best we’re going to do.

Continue reading “Swedish Senior Rolls In Style With Hybrid Hoverboard Walker”

Making A Mobility Scooter Drastically More Mobile

Do you have a spare mobility scooter sitting unused in your garage? Or, maybe you’ve got a grandmother who has been complaining about how long it takes her to get to bingo on Tuesdays? Has your local supermarket hired you to improve grocery shopping efficiency between 10am and 2pm? If you answered “yes” to any of those questions, then the guys over at Photon Induction have an “overclocked” mobility scooter build which should provide you with both inspiration and laughs.

They’ve taken the kind of inexpensive mobility scooter that can be found on Craigslist for a couple hundred dollars, and increased the battery output voltage to simultaneously improve performance and reduce safety. Their particular scooter normally runs on 24V, and all they had to do to drastically increase the driving speed was move that up to 60V (72V ended up burning up the motors).

Other than increasing the battery output voltage, only a couple of other small hacks were necessary to finish the build. Normally, the scooter uses a clutch to provide a gentle start. However, the clutch wasn’t up to the task of handling 60V, so the ignition switch was modified to fully engage the clutch before power is applied. The horn button was then used as the accelerator, which simply engages a solenoid with massive contacts that can handle 60V. The result is a scooter that is bound to terrify your grandmother, but which will get her to bingo in record time.

Continue reading “Making A Mobility Scooter Drastically More Mobile”