Adding an optical mouse sensor to an autonomous vehicle

optical-mouse-sensor-for-autonomous-vehicle

[Tim] is getting his drone ready for SparkFun’s 2013 Autonomous Vehicle Competition on June 8th. He has a pretty good start, but was having some problems accurately measuring travel distance. The technique he chose for the task was to glue magnets onto the axles of the vehicle and monitor them with a hall effect sensor. Those sensors are finicky and a few problems during testing prompted him to look at a redundant system. Right now he’s experimenting with adding an optical mouse sensor to the autonomous vehicle.

Recently we saw the same concept used, but it was meant for tracking movement of a full-sized automobile. If it can work in that application it should be perfect here since the vehicle is much closer to the ground and will be used in ideal conditions (flat pavement with clear weather). [Tim] cracked open an old HP mouse he had lying around. Inside he found an Avago ADNS-5020 sensor. After grabbing the datasheet he discovered that it’s simply an I2C device. Above you can see the Arduino Leonardo he used for the first tests.

[Tim] coded functions to monitor the chip, including some interesting ones like measuring how in-focus the surface below the sensor is. This brings up a question, is there limit on how fast the vehicle can travel before the sensor fails to report back accurately?

Intelligent autonomous vehicle makes it to Maker Faire

A few guys from Rutgers showed up at Maker Faire with Navi, their vehicle for the 2012 Intelligent Ground Vehicle Competition. Powered by two huge lead acid batteries, Navi features enough high-end hardware to hopefully make it through or around just about any terrain.

Loaded up with a laser range finder, a stereo camera setup, compass, GPS receiver, and a pair of motors capable of pulling 40A, Navi has the all the hardware sensors required to make it around a track with no human intervention. Everything is controlled by a small netbook underneath the control panel, itself loaded up with enough switches and an 8×32 LED matrix to be utterly incomprehensible.

In the videos after the break, the guys from Rutgers show off the systems that went into Navi. There’s also a video showing off Navi’s suspension, an impressive custom-built wishbone setup that will hopefully keep Navi on an even keel throughout the competition.

Also of note: A PDF design report for Navi and Navi’s own blog.

[Read more...]

All About the Google Autonomous Vehicle Project

There have been many self-driving cars made with different levels of success, but probably the most well-known project is the Google car.  What you may not have heard of, though is the autonomous Google cart, or golf cart to be exact. The first video after the break explains the motivation behind the cart and the autonomous vehicle project.  As with another autonomous vehicle we’ve featured before, they didn’t forget to include an E-stop button (at 1:03)!

In the second video (also after the break) Google’s Sebastian Thrun and Chris Urmson get into more of the details of how Google’s more famous autonomous Prius vehicles work and their travels around different towns in California. A safety driver is still used at this point, but the sensor package includes a roof-mounted 64-beam laser sensor, wheel encoder, radars, and a GPS sensor. With Google’s vast resources as well as their work with Streetview and Google maps, it’ll be interesting to see what comes of this technology.  I, for one, welcome our new robotic overlords.

[Read more...]

An Autonomous Minivan for Busy Parents

Although minivans are a staple of moms and dads that drive their kids to school, soccer practice, and the like, this vehicle imagines a time when maybe they won’t even have to. Autonomous cars have been in development for some time, but the video after the break gives a nice close-up view of how this particular vehicle was built and some of the testing that went into it.

Of particular interest was the external luggage pod modified to hold vehicle electronics. Everything is nicely laid out with wire duct to keep it neat. Those in the manufacturing industry might notice several other off-the-shelf components including an area scanner at 0:24 and extruded aluminum framing at 0:45. The apparent “E-stop” button on the passenger side comes from industry as well and may make the rider feel a bit more safe!

If this wasn’t interesting enough, check out this autonomous car by Google that has already driven from San Francisco to Los Angeles!

Brain Car Interface

The AutoNOMOS labs project has found a new way to maneuver its vehicles, your brain. We have looked at a previous version that uses a mostly computerized van under remote control from an iPhone. This one however, named “Brain Driver”, places the operator in the driver’s seat with an EEG strapped to their head.

Going for a more sporty look, the current vehicle is a drive-by-wire Volkswagen Passat wagon filled to the brim with fun toys like LIDAR/ RADAR sensor technology, cameras, and a specialized GPS. The EEG interface is a commercially available Emotiv model, and after a few rounds of training on safe ground, the driver is placed in control of the car.

In one demonstration the car approaches a 4 way intersection, the driver only has to think left or right and the car (intelligently) navigates the turn after coming to a proper stop, and checking for obstacles. In the second demo car and driver are let loose on an unused airport to test responsiveness.

If you like brains, cars, robots, and spinning lasers join us after the break for a video.

[Read more...]

Use iPhone to run yourself over

run-yourself-down-with-iphone

The Spirit of Berlin team has developed an iPhone app to remotely control a minivan. They didn’t have to do much to the vehicle to get this working because the platform was  developed for the 2007 Darpa Urban Challenge. The iPhone connects with the driving circuitry via WiFi and offers a gas button, a brake button, and a steering button to enable the accelerometer for turning. The front camera video is transmitted to the iPhone in real-time.

In the picture above you can see the operator in the center of the van’s camera view. It looks like the van’s top speed is limited, but remembering our own ineptitude in piloting RC vehicles, we hope this doesn’t result in a Darwin Award. We’ve embedded a video after the break. Everyone loves to see some Mario Kart reeneactment. You can catch some around 2:28 into the video. Enjoy.

[Read more...]

Ripsaw MS1

ripsaw

The Ripsaw MS1 is an unmanned ground vehicle built by two brothers in Maine. The tracked vehicle can go 0-60 in 3.5 seconds with an 80mph top speed. In its current form, it has a 2000 pound capacity, which opens the possibility for many different types of weapon systems. Control is provided by two people: one driver and one gunner. They work in independent remote stations. The Ripsaw could potentially be used in any application normally reserved for a tank. It could lead a charge without putting soldiers at risk.

We’ve been watching this project mature since 2005 when it was being marketed as a Grand Challenge competitor. This week it’s being demoed at the Army Science Conference. Check out footage of it in motion below.

[Read more...]