Turn Down The Bed, Turn Down The Lights

Home automation seems to be working its way to a computer-controlled future in which humans will be little more than an afterthought. Eventually they will take over Skynet-style, but until then, we will enjoy the relative comfort that a good home automation project provides. The latest from [Clement] certainly goes a long way towards this goal by automating his bed (Google Translate from French).

With four load cells and a microcontroller, [Clement]’s bed can tell whether or not he is sleeping. After taking a weight reading, the bed can send commands to the rest of his home automation system and tell it to turn off his stereo and turn the lights off in the house (or change them to a different color). And it doesn’t stop with just going to bed, but when he wakes up as well. The system can begin turning on lights, starting the coffee machine, and opening the blinds without any interaction from him at all.

This project goes well beyond simple home automation. With a little configuration and extrapolation, [Clement] can tell where in the bed he slept at night, what stages of sleep he was in at specific times, and the overall quality of his sleep. This could go a long way for someone who has a hard time sleeping and needs a little more information on how to correct the problem.

While we’ve seen various takes on tying a bed into one’s home automation system, this one goes above and beyond with the amount of data collected. You could even go one step further and have it turn on some Barry White if the normal weight in the bed suddenly doubles, for whatever reason. Maybe that will be a feature in Version 2.

Are You In Bed?

If you’re building an omniscient home-automation system, it’s ability to make decisions is only as good as the input you give it. [Petewill]’s self-made panopticon now knows when someone is in bed. That way, the [petewill]’s automatic blinds won’t open when he’s sleeping late on weekends.

[Petewill] didn’t take the easy way out here. (In our mind, that would be a weight sensor under one of the bed’s feet.) Instead, his system more flexible and built on capacitive sensing. He’d tried force sensors and piezos under the mattress, but none of them were as reliable as capacitance. A network of copper tape under the mattress serves as the antenna.

Continue reading “Are You In Bed?”

Rethinking Automated Bed Leveling For 3D Printers

Automatic bed leveling is the next killer feature that will be found on all commercial filament printers. It’s a problem that has been solved a few dozen times already; there are just so many ways you can go about it. The Printrbot uses an inductive sensor to determine the position of the metal bed in relation to the nozzle. The Lulzbot Mini touches the nozzle itself to four contacts on the corner of the bed. There are even a few projects that will mechanically level the bed with the help of a system of cams and springs. It’s a difficult problem, and none of these solutions are perfect. [mjrice] has been thinking about the problem, and he hit upon a solution that is simple, elegant, and can be replicated on a 3D printer. It’s the RepRap solution to 3D printing, and it looks cool, to boot.

Instead of using the nozzle as a contact, getting an inductive sensor, or fabricating a baroque system of gears and cams, [mjrice] is doing this the old-fashioned way: a simple microswitch, the same type of switch you would find on the limit switches of any RepRap. Having a switch at the same Z position as a nozzle is an iffy idea, so [mjrice] made this switch retract into the extruder during printing, without using any motors, servos, or other electromechanical contrivances.

The key to this setup is a simple spring and a rack gear. When this rack gear is hit from the left side, it moves an arm and places the switch down on the bed. Hit the rack from the right side, and the switch folds up into the extruder. Combine this with a bit of G-code at the beginning of the print, and the switch will move down, figure out the actual height of the bed, and flip up out of the way. Beautiful, elegant, and the algorithms for bed leveling are already in most major printer firmwares.

You can check out the video of the mechanism below. It’s a great little device, and since it’s on a RepRap first, it’s not going to show up in a proprietary 3D printer next.

Continue reading “Rethinking Automated Bed Leveling For 3D Printers”

Hacklet 35 – BeagleBone Projects

The Raspberry Pi 2 is just barely a month old, and now that vintage console emulation on this new hardware has been nailed down, it’s just about time for everyone to do real work. You know, recompiling stuff to take advantage of the new CPU, figuring out how to get Android working on the Pi, and all that good stuff that makes the Pi useful.

It will come as no surprise to our regular readers that there’s another board out there that’s just as good in most cases, and in some ways better than the Pi 2. It’s the BeagleBone Black, and for this edition of the Hacklet, we’re focusing on all the cool BeagleBone projects on Hackaday.io.

lcdSo you have a credit card sized Linux computer and a small, old LCD panel. If it doesn’t have HDMI, VGA or composite input, there’s probably no way of getting this display working, right? Nope. Not when you can make an LCD cape for $10.

[Dennis] had an old digital picture frame from a while back, and decided his BeagleBone needed a display. A few bits of wire and some FPC connectors, and [Dennis] has a custom display for his ‘Bone. It’s better than waiting for that DSI display…

bed[THX1082] is making a bed for his son. This isn’t your usual race car bed, or even a very cool locomotive bed. No, this is a spaceship bed. Is your bed a space ship? No, I didn’t think so.

Most of the work with plywood, MDF, paint, and glue is done, which means the best feature of this bed – a BeagleBone Black with an LCD, buttons, a TV, and some 3D printed parts – is what [THX] is working on right now. He’s even forking a multiplayer networked starship simulator to run in the bed. Is your bed a starship simulator?

beer

Beer. [Deric] has been working on a multi-step fermentation controller using the BeagleBone Black. For good beer you need to control temperatures and time, lest you end up with some terrible swill that I’d probably still drink.

This project controls every aspect of fermentation, from encouraging yeast growth, metabolization of sugars, and flocculation. The plan is to use two circuits – one for heating and one for cooling – and a pair of temperature sensors to ensure the beer is fermenting correctly.


If you’re looking for more BeagleBone Projects, there’s an entire list of them over on Hackaday.io with GLaDOs Glasses, Flight Computers, and Computer Vision.

Automated Bed Warmer Control For Chilly Nights

For most of the Northern Hemisphere, winter is in full swing right now. That means long, chilly nights. We assume [LC] is in one of these climes because it seems like his bed warmer wasn’t doing quite a good enough job of getting his bed up to a reasonable temperature before he climbed in. To alleviate some of his discomfort, he hacked into the control unit and added some automation.

The original controller uses a mechanical potentiometer to set the heat level. [LC] added a digital potentiometer which he can switch to in order to allow the automation (using a real-time clock to handle scheduling) to take over control of the bed warmer. This also preserves the original functionality of the controller. There is also an Arduino involved which handles the override from mechanical to digital potentiometer when a capacitive touch sensor is activated. This means that when someone attempts to take manual control of the device, the Arduino can switch the override circuit off.

There is quite a bit of detail on the project site about this hack, including the source code for the controller. [LC] also mentions that this could be interfaced to the web to allow remote control of the bed warmer. This is a great hack, and also fits into the idea of heating the person, not the room.

Automatic Desk

College Dorm Transforms Into High Tech Office

College dorms are notoriously tiny; which either forces most students into a life of minimalism, or for [Thomas Hopmans], innovation to overcome the lack of square-footage.

His first step was getting a Murphy bed, which saves tons of space. But he wanted to add a few extra features to his, so instead he decided to make his own! He designed the entire thing in SolidWorks, which might seem like overkill, but he’s an Industrial Design student, and has become quite proficient in the software from his various work internships.

The bed uses pneumatic struts to make lifting and lowering the bed frame easy — the cool part is the mechanism he designed which causes his dual 28″ monitors to pop up from the desk. They’re directly coupled to the bed with a linkage which ensures they’ll never get accidentally crushed by the bed.

He admits he could have just mounted the monitors to the bottom of the bed, but that wouldn’t have been nearly as fun as this.  He estimates the total cost was around $350 for whole thing, which isn’t half bad for a bed… and a desk!

Continue reading “College Dorm Transforms Into High Tech Office”

Cat Palace With An Automatic Heat Lamp

[Herpity] was getting tired of his cat manipulating him into turning on a lamp above her bed every time she wanted a nap. She likes the warmth put off by the light bulb but he knew he could do better than that so he built a bed which includes an automatic heat lamp. To help introduce her to the new enclosure he set it on the chair where she normally naps.

The bed has two parts, the lower chamber acts as the sleeping area. There is a false bottom underneath the blanket which acts a platform for the weight sensors which detect when the cat is ready for a nap. A PIC microcontroller monitors two sensors and switches on mains voltage to a heat lamp once the pre-calibrated weight threshold has been reached. The upper part of the enclosure holds all of the electronic components and makes room for the recessed light housing. [Herpity] included an exhaust fan for the upper chamber but it turns out a grating is all he needs to keep the temperature at an acceptable level.

[via Reddit]