Chicken-powered Pendulum

Every once in a while we get sent a link that’s so cute that we just have to post it. For instance: this video from [Ludic Science]. It’s a wind-up chicken toy that kicks a pendulum back and forth. No more, no less.

But before you start screaming “NOT A HACK!” in the comments below, think for a second about what’s going on here. The bird has a spring inside, and a toothed wheel that is jammed and released by the movement of the bird’s foot (an escapement mechanism). This makes the whole apparatus very similar to a real pendulum clock.

Heck, the chick toy itself is pretty cool. It’s nose-heavy, so that under normal conditions it would tip forward. But when it’s wound up, tipping forward triggers the escapement and makes it hop, tipping it backward in the process and resetting the trigger. The top-heavy chicken is an inverted pendulum!

And have a look, if you will indulge, at the very nice low-tech way he creates the pivot: a bent piece of wire, run through a short aluminum tube, held in place by a couple of beads. Surely other pivots are lower-friction, but the advantage of using a rod and sleeve like this is that the pendulum motion is constrained to a plane so that it never misses the chicken’s feet.

Our only regret is that he misses (by that much) the obvious reference to a “naked chick” at the end of the video.

Continue reading “Chicken-powered Pendulum”

Hacklet #8: The Animals

8

This week on the Hacklet we’re looking at Hackaday.io projects that are all about animals! Hackers and makers are well-known animal lovers, in fact many a hacker can be found with a pet curled up at their feet, or on their keyboard!

catWater[Brian’s] cat Roger loves drinking from the bathtub faucet. Unfortunately Roger hasn’t learned how to operate the faucet himself, so it gets left on quite a bit. To keep Roger happy while saving water, [Brian] created the Snooty Cat Waterer. Cat’s still don’t have thumbs, so [Brian] turned to capacitive sensing in the form of a Microchip MTCH10 capacitive proximity sensor chip. Coupled with a home etched PC board, the waterer can detect a cat at 3 inches. A valve and water feed teed off the toilet provide the flow. The project is moving along well, though Roger has been slow to warm up to this new water source.

 

catWater2[Jsc] has the opposite problem. His cat has decided that bathtubs are the perfect litter boxes. [Jsc] is taking aim at this little problem with his Cat Dissuader. After a servo controlled squirt bottle proved too anemic for his needs, [Jsc] turned to the Super Soaker Hydrostorm. These electric water guns can be had for as little as $16 on sale. [JSC] didn’t want to permanently modify the gun, so he 3D printed a switchable battery pack.The replacement pack is actually powered by a simple wall wart. Power to the gun is controlled by an Arduino, which senses his cat with a passive infrared sensor. Since the dissuader was installed, [Jsc’s] cat has been a model citizen!

 

doggieBowlCat’s don’t get all the love though, plenty of engineers and hackers have dogs around the house. [Colin] loves his dog, but he and his family were forgetting to feed it. He created Feed the Dog to help the household keep its four-legged member from going hungry. [Colin] tried a microcontroller, but eventually settled on implementing the circuit with old-fashioned 4000 series CMOS logic chips. He used a 4060 (14-stage ripple counter w/ internal oscillator) as an 8 hour timer, and 4013 dual flip-flop. Operation of Feed the Dog is as simple as wagging your tail. Once the dog is feed, the human presses a button. A green “Just fed” LED will glow for 30 minutes, then go dark. After about 6 hours, a red LED turns on. After 8 hours, the red LED starts blinking, letting everyone know that it’s time to feed the dog.

 

chookin

[Steve] has outdoor pets. Chooks to be exact, or chickens for the non Australians out there. He loves watching his birds, especially Darth Vader, who is practicing to become a rooster. To keep track of the birds, he’s created What the Chook?, a sensor suite for the hen-house. He’s using a GCDuiNode with a number of sensors. Temperature, humidity, even a methane detector for when the bedding needs to be replaced. An OV528 JPEG camera allows [Steve] to get pictures of his flock. The entire project connects via WiFi. Steve hopes to power it from a couple of AA batteries. [Steve] also entered What the Chook? in The Hackaday Prize. If he wins, this will be the first case of flightless birds sending a human to space!

 

hackaspace-mini

Hey – Did you know that Hackaday is building a Hackerspace in Pasadena California? We’re rounding up the local community while our space is being built out. Join us at a Happy Hour Show & Tell Meetup Event hosted by our own [Jasmine Brackett] August 18th! It’s an informal show and tell, so you don’t have to bring a hack to attend. If you’re local to Pasadena, come on down and say hello!

 

 

 

 

 

Mobile chicken coop includes wireless sensors

mobile-chicken-coop-build

In and of itself this mobile chicken coop is a pretty nice build. There are some additional features lurking inside which you don’t find on most coops. [Neuromancer2701] built-in a set of sensors which can be accessed wirelessly. It makes it a snap to check up on the comfort of the hens without leaving the couch.

At the heart of the sensor system is an Arduino along with an Xbee module. The build isn’t quite finished yet, but so far three sensors have been implemented. A thermistor is used to read the temperature inside the coop. To make sure there’s enough water, two sheets of foil tape were applied to the water reservoir. The CapSense library measures the capacitance between these plates which correlates to the water lever (we’ve seen this type of water level sensor before). And finally, there’s a sensor that can tell if the door to the coop is open or shut.

He’s having trouble automating the door itself. This can be pretty tricky, especially if you go for a super complicated locking mechanism like this one.

Optimus Prime keeps a vigilant watch over the hen-house

[shOOter—]  and his family are just starting to keep chickens and need a coop in which the hens could roost. He wanted it to be mobile and protective and what is more mobile and protective and the leader of the Transformers? As you can see, his chicken coop is modeled after Optimus Prime.

The cab of the truck serves as the hen-house. It’s made of marine grade plywood held together with glue and galvanized nails. The exhaust stacks, which are made of PVC pipe, are not just decorative. They are chutes for the feed trays to either side of the blue ramp (you can’t really see the trays in this image). To give the chickens a way to stretch their legs he brought his welding skills to bear. The trailer portion of the build is a welded metal frame covered in mesh which provides a rather large exercise yard. Since the habitat is enclosed there’s really no need for an intricate motorized door.

[Thanks James]

Chicken coop door using threaded rod

There’s no rooster to wake them up, and [Steve] and his wife are fine with that. What they’re not fine with is having to get up early anyway in order to let the chickens out of the coop. Like many small-scale egg farmers they sought out an automatic solution for opening the coup in the morning.

[Steve] had seen a bunch of different automatic coup door hacks kicking around the Internet. But all of the ones he could find used a vertical door and pulleys. His setup has a door that opens horizontally and he realized that he needed to build some kind of linear actuator. What he came up with is a system built with hardware store parts. He’s using a plain old piece of threaded rod along with a coupling nut (they’re usually 3/4″ long or so). The nut is held firmly on the door using a conduit mounting bracket, while the threaded rod is turned by an electric screwdriver mounted to the jamb. Two limiting switches are made up of magnetic sensors often used to ring the door entry bell when you enter a store. An Arduino takes care of scheduling and controlling the motor for opening and closing the door. See for yourself in the high-production-value video after the break.

For what it’s worth, we have seen at least one rope and pulley door that slides horizontally.

Continue reading “Chicken coop door using threaded rod”

A chicken tractor to call home

[Dino] didn’t want to keep the baby chickens cooped up when he was at work, but he didn’t want them to escape, or become a juicy treat, either. His solution was to build this chicken tractor. It’s a complete chicken ecosystem with wheels, kind of like a double-wide trailer for our feathered friends. On one end is a small coop that contains food, water, and an incandescent light bulb for heat. The other end is a chicken-wire box that lets the young birds stretch their legs and get some fresh air.

It’s easy to see the wheels which flip down when [Dino] needs to move the contraption. Like we said, he puts it out when he goes to work, selecting different parts of the yard so that the grass gets evenly fertilized. It’s a nice solution if you don’t have enough area to dedicate to an automated chicken coop.

We’ve embedded [Dino’s] video after the break. He covers the beginning and end of the build, and fills the middle of the video with a time-lapse recording of the construction process.

Continue reading “A chicken tractor to call home”

Fowl accommodations provided by mathematics

[Anthony’s] chickens happily return to roost each night thanks to the spacious house he built for them. Sadly the geodesic dome never became the home of the future despite what the people were promised. But using a bit of unorthodox joinery you can create enclosures for your chickens or other animals in need of shelter.

The construction begins with 30 isosceles triangles and nine equilateral triangles which he cut from solid wood on a chop saw. To join the pieces he used metal banding and screws, which hold the edges close together but allow them to flex. This solved the problem of precision mitres at the edge of each wood piece. Once the dome was fully assembled he filled the joints with caulk and finished it with rubber roofing compound.

Our only question is: how’s he going to automate the door of the coop?