Flying Wing Project uses 3D Printing to Reach New Heights

A team of engineers from the Advanced Manufacturing Research Centre at the University of Sheffield have just put the finishing touches on their 3D printed Flying Wing with electric ducted fan engines — a mini electric jet so to speak.

Earlier this year they had created a completely 3D printed fixed wing UAV, which the new Flying Wing is based off of. Designed specifically for the FDM process, they were able to optimize the design so that all parts could be printed out in 24 hours flat using ABS plastic.

The new design also almost exclusively uses FDM technology — however the wings are molded carbon fibre… using a 3D printed mold of course!  The original glider weighed 2kg, and with the upgrades to the design, the Flying Wing weighs 3.5kg, with speed capabilities of around 45mph.

Continue reading “Flying Wing Project uses 3D Printing to Reach New Heights”

Hackaday Links: June 29, 2014

hackaday-links-chain

Ever see a really cool build on YouTube with no build details at all? Frustrating, right? That’s us with the NES Keytar covering the Game of Thrones theme. He’s using a Raspi with the sound chip in the NES to do live chiptunes. Freakin’ awesome. There’s also the ST:TNG theme as well.

A few years ago the folks at Oculus had an idea – because of cellphones, small, high resolution displays are really cheap, so why not make VR goggles? At Google IO this week someone figured out everyone already has a cellphone, so just wrap it in some cardboard and call it a set of VR goggles. You can get a kit here, but the only difficult to source components are the lenses.

What happens when you put liquid nitrogen under a vacuum? Well, it should evaporate more, get colder, and freeze. Then it breaks up into solid nitrogen snow. No idea what you would do with this, but there ‘ya go. Oh, [NC], we’re going to need a writeup of that LN2 generator.

About a month ago, the House4Hack hackerspace in South Africa told us of their plans to bring a glider down from 20km above the Earth. They finally launched it, The CAA only allowed them to glide back from 6km (20,000 feet), but even from there the foam glider hit 230kph (124 knots). That’s a little impressive for a foam FPV platform, and we’re betting something with a larger wingspan would probably break a spar or something. Shout out to HABEX.

All the electronic dice projects we’ve seen have one thing in common: they’re not cubes. Thus uberdice. It’s six nine-pixel displays on the faces of a cube, powered by a battery, and controlled by an accelerometer. Yes, it is by far the most complicated die ever made, but it does look cool.

High Altitude Glider Will Be Dropped From a Balloon!

Glider from space

[House4Hack] and [HABEX] have teamed up to design and build a glider system that can be taken up 30-40km via a weather balloon, dropped, and flown home via FPV.

Of course, this has been done before, but you know what, it’s such a cool experiment, and so few people have done it… who cares! The goal is to hit at least 20km altitude, hope for 30km, and if possible — 40km would break records. For reference, the one we linked made it 33km up.

The plane is a Mini-talon V-tail, which was donated to them by their local hobby shop as a sponsorship. It features an ArduPlane Autopilot module, a 1.2GHz video transmitter, a long range 433MHz receiver for the control signal, and a telemetry data link at 433MHz connected to the ArduPlane. Two GoPro cameras make up its eyes, and it also has a custom release mechanism for letting go of the weather balloon.

Continue reading “High Altitude Glider Will Be Dropped From a Balloon!”

An Android Controlled Arduino Drone

Drone

Who among us has not wanted to create their own drone? [Stefan] wrote in to tell us about a project for high school students, where a Styrofoam glider (translated) is converted into an Android (or PC) controlled drone.

[Stefan] tells us that the inspiration for this project comes from 100 years ago, when “steam-engines were THE thing” and children became introduced to modern technology with toy engines. “Today, mechatronic designs are all around us and this is an attempt to build the equivalent of the toy steam engine.” This project showcases how modern tools make it easy for kids to get involved and excited about hardware hacking, electronics, and software.

At the heart of the glider is an Arduino Pro Mini which communicates with either a computer or an Android phone via Bluetooth. It is especially interesting to note that the student’s used Processing to create the Android app, rather than complicating things by using Eclipse and Android Development Tools (ADT). While the more detailed PDF documentation at the end of the project page is in German, all of the Processingand Arduino code needed to build the project is provided. It would be awesome to see more Bluetooth related projects include a simple Android application; after all, many of us carry computers in our pockets these days, so we might as well put them to good use!

Do you have any well documented projects that introduce young and budding engineers to hardware or software hacking? Let us know in the comment section or send us a tip!

PropVario, a Talking Variometer/Altimeter for RC Sailplanes

propvario

Lift. For a sailplane pilot it means the difference between a nice relaxing flight, or searching for an open area to land. Finding lift isn’t always easy though. This is especially true when the sailplane is hundreds of meters above a pilot whose feet are planted firmly on the ground. That’s why [Tharkun] created PropVario. PropVario is a combination variometer and altimeter for Radio Controlled sailplanes. We’ve seen a few variometers in the past, most often for full-scale sailplane or hang glider pilots. Almost every full-scale plane has a variometer as part of its suite of gauges – usually called a rate of climb or vertical speed indicator.

R/C pilots don’t have the luxury of looking at a gauge while flying though. At altitude even large 2 meter gliders can appear to the naked eye as no more than a dot. It would be somewhat embarrassing to lose sight of your glider because you were checking gauges. The solution is actually simple. A varying audio tone indicates the rate of climb of the plane. Higher pitched tones mean the plane is going up. Lower pitched tones mean the plane is descending. This system, coupled with a simple radio transmitter, has been in use by R/C sailplane pilots for years.

Continue reading “PropVario, a Talking Variometer/Altimeter for RC Sailplanes”

Launching a glider from space

launching-a-glider-from-space

We get a ton of tips about weather balloon launches taking hobby electronics into space. But every once in a while one of them stands out from the rest. This project does send an electronic payload into space, but it also lets [David] fly his hardware back from near-space using an RC airplane.

The return vehicle is unpowered, but that shouldn’t be a problem as launching from a weather balloon will provide plenty of altitude for the flight. Because the temperature experienced in that part of the atmosphere is so cold [David] had to take several things into account. Obviously you want your batteries and control electronics to be insulated from the cold. But something that doesn’t usually pop into mind are issues with the servo motors which run the glider’s flaps. They usually have some white grease on the gears. At temps as low as -50C that grease will harden and make the servo stop working so he made sure to clean the gears thoroughly before the flight.

Unfortunately [David] had several problems capturing images and recorded video from the ground station. But his write up is still a fun read and the clip after the break gives a general overview of the entire project from the nose camera of the glider.

Continue reading “Launching a glider from space”

Nook Simple Touch as a glider computer

Look at the beautiful screen on that Nook Simple Touch. It has a lot of advantages over other hardware when used as a glider computer running the open source XCSoar software. The contrast of the display is excellent when compared to an LCD or AOMLED. That’s quite important as gliding through the wild blue yonder often includes intense sunlight. The display is also larger than many of the Android devices that have been used for this purpose. There are a few drawbacks though. One is that unlike other Android devices, this doesn’t have a GPS module built into it. But the price point makes up for the fact that you need to source an external module yourself.

This isn’t the first time we’ve seen the device used as a navigational display. This other hack put a simple touch on a sailboat for the same direct-sunlight-readability reason. For $100, and with the ability to root the system for use as an Android device, we expect to see this to keep popping up all over the place as a simple interface for a multitude of projects.

After the break you can see a video comparing the software running on a Nook display to one on a Dell Streak 5 LCD tablet.

Continue reading “Nook Simple Touch as a glider computer”