A Stress Monitor Designed Specifically To Help You Work From Home

There are quite a bit of mixed emotions regarding working from home. Some people love it and are thriving like they haven’t before, but others are having a bit of a hard time with it all. [Brandon] has been working from home for the last 12 years, but even after so many years of managing this type of work culture, he admits that it can still be a little stressful. He says he doesn’t take enough time in between tasks to simply relax and to breathe a little and the day-to-day minutia of his work can drive his stress level up if he doesn’t take some time to calm himself. He figured he could make something to monitor his stress level and remind himself to take a break and the results are pretty impressive.

He develops a system to monitor his heart rate and the ambient noise level in his room and uses these metrics as a measure of stress. If his heart rate or the ambient noise level goes above a certain threshold, then he sends himself a text message reminding himself to relax and take a break. You’ve probably seen people use heart rate as a measure of stress already, but you’re probably less familiar with using sound. [Brandon] basically thought the sound sensor would detect if he starts ranting for prolonged periods of time or if he’s in a Zoom meeting that gets too heated. We thought that was pretty neat.

[Brandon] used an off-the-shelf chest strap heart rate monitor to save himself a bit of time in trying to build his own. The device sends heart rate data to an nRF52840 over Bluetooth and then pushes the data to the cloud using a Blues Wireless Notecard. The Notecard also offers data encryption which gave [Brandon] some added peace of mind knowing his biometric data wasn’t floating around in the cloud without any sort of protection. This certainly isn’t medical-grade encryption, but it gave him a bit of comfort, nonetheless. All that data is processed in his custom-designed web app and when the appropriate thresholds are reached, he sends a text message to himself using Twilio reminding him to relax and unwind for a bit.

For his next iteration, [Brandon] might try making his own heart rate monitor. But until then, stay safe everybody, and remember to take a break whenever you need it.

Continue reading “A Stress Monitor Designed Specifically To Help You Work From Home”

Arduino Polygraph Shows How It’s Done

Sometimes, a project comes along that makes a good reference design for anyone doing similar work. In this particular case, it’s a DIY USB polygraph-like machine by [Juangg] using an Arduino and sensors on the hardware side, and a Python front end for data visualization. It’s even complete with 3D printed enclosure and sensor elements.

[Juangg] designed it to use three sensors: a pulse sensor, a breath sensor, and one to measure Galvanic Skin Response (GSR). The pulse sensor uses a piezo element pressed against a fingertip to detect changes in pressure resulting from blood flow. It can be picky about placement, but finding sweet spot can yield remarkably good readings. The breath sensor works on a similar principle but uses a 3D printed fixture to hold the sensor between a strap and the subject’s chest, so that breathing in and out can be detected. The GSR sensor is a voltage divider used to measure small changes in skin conductivity. How well does it all work? That depends on what one is looking to get out of it, but the documentation and design files are available from the project page and the GitHub repository if anyone wants a reference for similar work.

The polygraph may have a mixed reputation, but it makes a good project that demonstrates just how messy biometrics can be from an engineering perspective. And in case you missed it, here’s a reminder that Wonder Woman and the polygraph have much more in common than you might realize.

Arduino Based Biofeedback Unit

[Michael Gerstenmayer] has been very successful in developing a biofeedback system. He’s based the build around an Arduino and started adding different chunks to the project to develop a full-featured unit. It can take your temperature (with an IR sensor…. not the hard way), measure your galvanic skin response (conductance), and produce feedback based on this data. Interestingly enough, he built a peripheral vision feedback system based on the glasses frames seen above. They have an LED on each side which are illuminated based on the sensor data.

By using the Arduino’s USB connection the data can also be processed by a PC. [Michael] spent some time working with an open source program called BrainBay to gather and map the stream from the sensors.

We enjoyed reading about the build, but there’s no information about what he’s got planned for this project. That shouldn’t stop you from setting up your own rig and using it as a lie detector, or for the devilish purposes we’ve seen in the past.