Mechanical Keyboard Goes BLE

Like many programmers, [Daniel Nugent] loves his old mechanical keyboard (a WASD Code Keyboard). What he didn’t love was the cord. Sure, you can get a modern wireless keyboard, but it won’t be the same as the keyboard you’ve spent so much time with. Armed with a Bluetooth Low Energy (BLE) module, a rechargeable battery and some coding, he kept his keyboard but got rid of the wires.

Although he has some specific handling for the WASD, the code would very likely handle any PS/2 keyboard. The PS/2 interface is a simple synchronous serial port with a single clock and single data line. Handling it with a microcontroller isn’t very difficult.

Continue reading “Mechanical Keyboard Goes BLE”

Turning A Typewriter Into A Mechanical Keyboard

Is your keyboard too quiet? Is your Cherry MX Blue board not driving your coworkers crazy enough? If the machine gun fire of a buckling spring keyboard isn’t enough for you, there’s only one solution: [Russell]’s typewriter turned into a mechanical keyboard.

Converting typewriters into keyboards has been done for a very long time; teletypes, the first computer keyboards, were basically typewriters, and the 1970s saw a number of IBM Selectrics converted into a keyboard with serial output. Even in recent years, typewriters have been converted into keyboards with the help of some switches and an ATMega. [Russell]’s mechanical keyboard improves on all of these builds by making the electronic interface dead simple, and a project that can be done by anyone.

Instead of installing switches underneath every key or futzing about with the weird mechanics of a Selectric typewriter, [Russell] is only installing a touch-sensitive position sensor into the frame of the typewriter. When a key is pressed, it strikes a crossbar in the frame of the typewriter. With a single ADC chip and a Raspberry Pi, [Russell] can determine which key was pressed and use that information to output a character to a terminal.

It’s a very simple solution for an electrical interface to a mechanical device, and the project seems to work well enough. [Russell] is using his new keyboard with Vim, even, something you can check out in the video below.

Continue reading “Turning A Typewriter Into A Mechanical Keyboard”

Analyzing The Microsoft Surface Touch Keyboard Cover

The Microsoft Surface is an awesome Tablet PC, but it has one problem: there is just one USB port on it. There is an additional port, though: a connector for the Surface Touch Keyboard connector. That’s what [Edward Shin] is looking into, with the long-term intention of creating an adapter that allows him to connect a Thinkpad keyboard to this proprietary connector. His initial work identified the connector as using Microsoft’s own HID over I2C protocol, which sends the standard USB HID protocol over an I2C connection. So far so good, but it seems to get a little odd after that, with a serial connection running at nearly 1 Mbps and sending 9 bits per transfer with 1 stop bit. Presumably this is because Microsoft had planned to release other devices that used this connector, but this hasn’t panned out so far.

Anybody want to help him out? He has posted some captured data from the connection for analysis, and is looking for assistance. We hope he manages to build his converter: a Microsoft Surface with a decent keyboard and an open USB port would be a great portable setup. Bonus: for those teardown fans among you, he has done a great teardown of a Touch Cover keyboard that reveals some interesting stuff, including a lot of well-labelled test points.

Via [Reddit]

Hackaday Prize Entry: Emoticon Keyboard

The Internet is raising an entire generation that can speak entirely in emoticons. This reverses the six thousand year old evolution of written language and makes us (╯°□°)╯︵ ┻━┻. It is, however, fun. There is a problem with these newfangled emoticons: no one actually types them; they’re all copied and pasted. This is inefficient, and once again technology is here to save us once again.

For his Hackaday Prize entry, [Duncan] is working on an EmojiPad. It’s a (mechanical!) keyboard for typing emoticons, but it can also be used for gaming, CAD design, or as a USB MIDI device.

The keyboard uses 16 Cherry MX switches in a standard diode matrix configuration. This is a USB keyboard, and for the controller, [Duncan] is using an ATMega328 with the V-USB library This is all well-worn territory for the mechanical keyboard crowd, so to spice things up, [Duncan] is going to add individually addressable LEDs underneath each keycap. The ATMega328 doesn’t have enough pins to do this the normal way, so all the LEDs will be Charlieplexed.

A keyboard for emoticons demands custom keycaps, but [Duncan] is having a hard time finding a good solution. Right now he’s planning on using blank keycaps with vinyl decals, a somewhat expensive option at $1 USD a keycap. A better, even more expensive option exists, but for something as ephemeral as an emoticon keyboard a sticker will do just fine.

The 2015 Hackaday Prize is sponsored by:

Childhood Tech Exposure Is Slowly Killing The Keyboard

I see the disturbing trend of moving away from keyboards as input devices — and I’m talking about a real, physical keyboard. This isn’t a matter of one decision that kills the keyboard, but an aggregate that is slowly changing the landscape. If you blink, you’ll miss it. We will not find ourselves in a world without keyboards, but in one where most of the available keyboards suck.

Rise of the Virtual Keyboard Generation

Is swipe-style keying the future of coding?
Is swipe-style keying the future of coding?

Tablets are great for screwing around, but when you want to get real work done in a reasonable amount of time, you grab a physical keyboard. In this scenario I don’t see the problem being those in the workforce going away from keyboards; it’s how the younger generations are learning to interact with technology that is troubling. The touchscreen is baby’s first computer. Families gather and the kids are handed their parent’s tablets while the grown-ups watch the game. More and more schools are outfitting classrooms with tablets, and for this I’m an advocate. Getting kids involved early in technology is imperative; knowledge evolves much more rapidly than printed textbooks. The tablet is a powerful tool in both of these areas. But most of the screen time kids get is with touchscreens and no physical keyboard.

How much time are K-12 kids spending in front of a physical keyboard? In the United States, if keyboard (typing) classes exist at all in a public school’s curriculum they’re usually only one-semester. Students who spend half of Elementary school using a tablet, and just one semester at a keyboard, are bound to prefer touchscreen-based entry over a physical keyboard.

Keyboard Erosion

We’ve already seen a strong push into touch-screens on laptops as the tablet market has grown. This is not necessarily a bad thing. Think of the computer mouse, it didn’t replace the keyboard, but augmented it and now is seen as a tool that itself is a necessity.

Continue reading “Childhood Tech Exposure Is Slowly Killing The Keyboard”

Secret Keyboard Stash

Hide in plain sight is an old axiom, and one that [Kipkay] took to heart. His sneaky keyboard hack takes the little-used numeric keyboard and converts it to a handy (and secret) hiding hole for small objects you want to keep away from prying eyes.

You might have to adapt the hack to your specific model, but [Kipkay] cuts out the membrane keyboard, secures the numeric keypad keys with hot glue, and then cuts it out with a Dremel. Some cardboard makes the compartment and once the fake keypad is in place, no one is the wiser.

As you can see in the clip after the break, the compartment isn’t very big. You aren’t going to hide your phone inside, but it is just the right size for some emergency cash, a credit card, or maybe an SD card or two.

Continue reading “Secret Keyboard Stash”

Transmitting MIDI Signals With XBEE

What do you do when you want to rock out on your keytar without the constraints of cables and wires? You make your own wireless keytar of course! In order to get the job done, [kr1st0f] built a logic translator circuit. This allows him to transmit MIDI signals directly from a MIDI keyboard to a remote system using XBEE.

[kr1st0f] started with a MIDI keyboard that had the old style MIDI interface with a 5 pin DIN connector. Many new keyboards only have a USB interface, and that would have complicated things. The main circuit uses an optoisolator and a logic converter to get the job done. The MIDI signals are converted from the standard 5V logic to 3.3V in order to work with the XBEE.

The XBEE itself also needed to be configured in order for this circuit to work properly. MIDI signals operate at a rate of 31,250 bits per second. The XBEE, on the other hand, works by default at 9,600 bps. [kr1st0f] first had to reconfigure the XBEE to run at the MIDI bit rate. He did this by connecting to the XBEE over a Serial interface and using a series of AT commands. He also had to configure proper ID numbers into the XBEE modules. When all is said and done, his new transmitter circuit can transmit the MIDI signals wirelessly to a receiver circuit which is hooked up to a computer.