Nixie suduku and on-die LEDs

The best booths at Maker Faire draw you in with something unbelievably cool or ridiculously absurd, and bring out a state-of-the-art technology just as your curiosity for the main feature starts to wane. [John Sarik]‘s booth for a class he’s TAing at Columbia – Modern Display Science and Technology - is one of these booths.

The main feature of the booth is a suduku board filled with 81 Nixie tubes. As shown in the video below, you control the cursor (the decimal point of the Nixies) with a pair of pots. After moving the cursor to the desired location, there’s a keypad to change the number at any one of the 81 locations on a suduku puzzle.

[John]‘s presentation then continued to what he’s working on up at Columbia: he’s working on a project to put arrays of LEDs onto silicon, just like any other integrated circuit. He demoed a small LED display built in to a DIP-40 package with a glass (or maybe quartz) window. Yes, it’s a really tiny LED matrix display with a pixel pitch probably much smaller than a traditional LCD display.

Video of the suduku machine after the break, as well as a gallery of the LED matrix on a chip. The matrix was very hard to photograph, so if [John] would be so kind as to send a few more pics in, we’ll be happy to put them up. There’s also a proper video from [John]‘s YouTube showing off the Nixie Suduku puzzle solving itself with a recursive algorithm.

Continue reading “Nixie suduku and on-die LEDs”

It was only a matter of time before we saw Nixie modules for the Arduino

The Nixie tube, a neon-filled tube with a series of 10 cathodes shaped like numerals, is a classic display for any build wanting a unique, vintage, or steampunk aesthetic. We shouldn’t be surprised a factory in China is now turning out Arduino-compatable Nixie modules (English translation, but don’t get your hopes up), but there it is.

The modules are based on the QS30-1 Nixie tube capable of displaying the digits 0 through 9, and include an RGB LED behind the tube for some nice additional illumination. According to the manual, the modules themselves are based on a pair of 74HC595 shift registers, and are ‘stackable.’ By applying 12 volts to a pair of pins and connecting another 5 wires to an Arduino, it’s possible to drive as many of these Nixie modules as you’d like.

[Paul Craven] got his hands on a quartet of these modules and is planning on building a steampunk style alarm clock as a personal project. [Paul] was able to get the modules up and running fairly quickly, as seen after the break.

While they’re most certainly not the cheapest option, if you’re planning a build with Nixies, this probably is the easiest way to get a vintagey, steampunkey numerical display.

Continue reading “It was only a matter of time before we saw Nixie modules for the Arduino”

How about a nice game of Nixie chess?

[Tony] sent in a Nixie tube chess set he’s been working on, and we’re just floored with the quality of this build. The chess pieces glow without any visible wires, the board is extremely elegant with touches of gilding and brass, and extremely well designed using (mostly) materials and components contemporary to the old Russian Nixie tubes.

Instead of numeric Nixies, [Tony] chose IN-7 and IN-7A tubes originally made to display scientific symbols such as A, V, and ~. To power the these tubes, [Tony] used 64 air-core transformers underneath each square on the chess board, allowing these Nixie tubes to be powered just like an induction charger.

Even though his blog posts are a little thin on details, we’ve got to hand it to [Tony] for an amazing build. He says there will be a kit available that includes a gigantic PCB, but we wouldn’t hazard a guess as to how much that will cost.

You can check out a pair of videos of the Nixie chess set in action after the break.

Continue reading “How about a nice game of Nixie chess?”

Closing in on Nixie cuff links

It’s not Nixie cuff links yet, but we’re seeing a lot of potential for a few very classy accoutrements with [thouton]‘s Nixie tube necklace.

The build was inspired by this much clunkier necklace that found its way onto the MAKE blog. Unlike the previous necklace, [thouton] used a much smaller Mullard ZM1021 indicator bulb. Instead of the normal 0-9 digits in a Nixie, this tube displays only A V Ω + - % and ~, betraying its pedigree as part of the display from an ancient multimeter.

To power the bulb, [thouton] is using a single AA battery and a boost converter salvaged from a camera flash unit. All the circuitry is on a little piece of perfboard encased in a handsome aluminum tube. Power is delivered through two terminals with a bit of audio cable standing in as the chain of the necklace. We suppose this could be re-engineered to use a coin cell battery; although a coin cell doesn’t offer as many amp hours as a AA cell, [thouton] is confident the AA will last for a few days. A coin cell would be more than enough for a night on the town, though.

Edge-lit Nixie tube is sheer brilliance

It’s not often that we see something so brilliantly simple we’re left reaching for our checkbooks while wondering exactly how we never though of that before. [Jürgen]‘s edge-lit Nixie display is one of those builds.

[Jürgen]‘s modern take on a Nixie display uses ten laser-engraved pieces of acrylic to emulate a Nixie numerical display. In the base of the display are 10 LEDs, each shining onto the side of a piece of acrylic. When an LED lights up, you can clearly see the corresponding number. Edge-lit displays are old hat, but talking about the possibility of an RGB Nixie-style display is really neat.

The build was inspired by an antique edge-lit display that performed the same function as the ever-popular Nixie tube with 10 miniature light bulbs and light pipes. The ancient edge-lit displays came in a rectangular enclosure that worked very well for panel-mount uses, but [Jürgen] stuck to a more traditional cylindrical orientation. All we want to know is when a manufacturer in China is going to start building these. Check out the demo of the edge-lit Nixie after the break.

Continue reading “Edge-lit Nixie tube is sheer brilliance”

Numitron tube tutorial

Nixies and VFDs are great displays, but when using them you’ve got to deal with some fairly high voltages, at least for the micro projects we see on Hack a Day. Luckily, there’s another ancient technology that can be driven at tiny voltages. [Kenneth] put up a great tutorial on Numitron tubes to show the Internet how to get these guys working.

Numitron tubes are like Nixies, but instead of the ten number-shaped filaments in each Nixie, Numitrons are old-school seven-segment displays. [Kenneth] picked up a few on ebay and the seller was kind enough to include a Russian data sheet. Each filament in his IV-9 Numitrons required about 20mA to light up, perfect for the constant current LED drivers [Kenneth] picked up

The test circuit consisted of an ATtiny2313 and an A6278 LED driver. The code on the ATtiny cycles the digits 0 through 9. This is sent through the LED driver and lights up the tiny filaments inside the tube. Check out the video after the break to see the Numitron in action

Continue reading “Numitron tube tutorial”

A clock made out of some very weird tubes

If you’re like [Richard], you’ve got a few really rare components lying around. Maybe it’s a very weird micro or a really tiny CRT, but eventually you’ve got to build something with these parts. When [Richard] decided to put some ITS1A neon display tubes to use, he fell back to the old standby – a really awesome clock.

Unlike the lowly Nixie tube, the ITS1A tube is weird. It’s a neon seven-segment display that can be controlled directly from the pins of a microcontroller. It does this with the help of seven tiny thyratrons in each segment. Even though this tube has neon, the display isn’t the familiar neon orange-red. The tube emits a lovely green with the help of a phosphor coating.

With a single digit already incorporated into [Richard]‘s clock, he needed four indicators for the hours and minutes. After a failed experiment with a crazy 4-color, 16-pixel Melz ITM2-M display, he moved on to a simpler MTX90 thyratron indicator.

Using the same control scheme as his earlier numitron clock, Richard had a PCB made and wired everything up. The seven-segment tube indicates the value, and the indicator tubes indicates the position of the digit in the XX:XX standard. A very cool  build with parts you don’t see coming around often.