Reverse Engineering the McDonald’s French Fry

McDonald’s is serious about their fries. When they were forced by shifting public opinion (drunkenly swaggering around as it always does) to switch from their beef tallow and cottonseed oil mixture to a vegetable oil mixture; they spent millions to find a solution that retained the taste. How they make the fries is not the worlds most closely guarded secret, but they do have a unique flavor, texture, and appearance which is a product of lots of large scale industrial processes. [J. Kenji López-Alt] decided to reverse engineer the process.

His first problem was of procurement. He could easily buy cooked fries, but he needed the frozen fries from McDonald’s to begin his reverse engineering. McDonald’s refused to sell him uncooked fries, “They just don’t do that,” one employee informed him. He reached out to his audience, and one of them had access to a charlatan. The mountebank made quick work of the McDonald’s employees and soon [J. Kenji] had a few bags of the frozen potato slivers to work with.

What follows next was both entertaining and informative. At one point he actually brought out a Starrett dial caliper to measure the fries; they were 0.25in squares in cross section. Lots of research and experimentation was done to get that texture. For example, McDonald’s fries aren’t just frozen raw potatoes. They are, in fact; blanched, flash fried, frozen and then fried again. Getting this process right was a challenge, but he arrived at similar fries by employing his sous vide cooker.

He then wanted to see if he could come up with a french fry recipe that not only allowed the home chef to make their own McDonald’s fries, but improve on them as well. It gets into some food chemistry here. For example he found that the same effect as blanching could be produced by boiling the fries; if you added vinegar to keep the cell walls from disintegrating.

The article certainly shows how knowledge of the chemistry behind cooking can improve the results.

Brewing Beer with a Sous Vide Cooker

[Ken] found an interesting use for his sous vide cooker. He’s been using it to help him with his home brewing. It’s unlikely that the manufacturer ever intended it to be used in this manner, but as hackers we don’t really care about warranties.

Beer brewing is as much of an art as it is a science. There are a lot of variables that go into the process, and tweaking any one of them can result in your beer tasting different. There is one process during brewing that is called mashing. Mashing is when you soak malted grains in hot water to pull out the sugar. The amount of sugar that gets extracted is very dependent on how long the grains are soaked, and the temperature of the water. If you want your beer to taste a certain way, then you want to ensure that the water stays at constant, repeatable temperature.

As a home brewer, [Ken] has been using his stove top to heat the water. This gets the water warm, but in order to keep the temperature consistent, he has to constantly monitor the temperature and adjust the knob accordingly. Who wants to sit around and do that all day? He needed something to control the temperature automatically. Enter the sous vide cooker.

Sous vide is a method of cooking in which food is placed into an airtight bag and then submerged in a water bath with very strict temperature control. The process takes a long time to cook the food, but the result is supposed to be meat that is cooked perfectly even while also retaining all of the moisture and juices. [Ken] figured he might be able to use a sous vide cooker to control the temperature of the mash instead of a water bath.

His experiment worked wonderfully. He used the stove top to help get the mash up to the close temperature, then the sous vide cooker was used to fine tune things from there. [Ken] says he was able to achieve 75% efficiency with his mash, which is exactly what he was going for. Continue reading “Brewing Beer with a Sous Vide Cooker”

Turkey Sous Vide

It’s time once again for Americans to gorge themselves on hormone-laced meats covered in several sauces and gravies, all of which inexplicably contain corn syrup. It’s also Thanksgiving this Thursday, so there’s that, too. If you have a turkey defrosting somewhere, you’ve probably gone over all your cooking options – the oven, a giant propane-heated pot of peanut oil, and yes, even sous vide. [Trey] over at TI came up with a great sous vide controller using a few LaunchPad Booster packs, and surprisingly, he can even cook a turkey.

The basic idea of sous vide is to vacuum pack your protein, put it in a closely-controlled water bath, and cook it so the inside is always the same temperature as the outside. It’s delicious, and it takes a long time. We can automate that, though.

[Trey] is using a USB LaunchPad and a thermocouple BoosterPack to monitor the temperature of a water bath. A custom SSR board is wired right into the heater, and a CC3100 provides a network connection to monitor the bird. While the network may seem a bit superfluous, it’s actually a great idea; sous vide takes hours, and you really don’t dote on your warm tub of water. Being able to receive SMS alerts from a sous vide controller is actually a great idea.

With everything wired up, [Trey] tried out his recipe for deep-fried turkey porchetta. From the pictures, it looks great and according to [Trey] it was the juiciest turkey he’s ever had.

Hackaday Links: September 7, 2014

Like Adventure Time? Make your own BMO! It’s a little more expressive than the Adafruit version we saw earlier due to the Nokia LCD. It’s got audio playback too so it can talk to football.

A few years ago, [Matt] made a meat smoker with a PID controller and an SSR. Now the same controller is being used as a sous vide. PID controllers: the most useful kitchen gadget ever.

[Josh] keeps his server in a rack, and lacking a proper cable management solution, this means his rack is a mess. He adapted some Dell wire management arms to his system, using a PCI card bracket to attach the arm to the computer.

[Dr. Dampfpunk] has a lot of glowey things on his Youtube channel

Another [Josh] built a 3D tracking display for an IMU. It takes data off an IMU, sends it over Bluetooth, and displays the orientation of the device on a computer screen. This device also has a microphone and changes the visualization in response to noises.

Remember the pile of failure in a bowl of fraud that is the Scribble pen? Their second crowdfunding campaign was shut down. Don’t worry; they’re still seeking private investment, so there’s still a chance of thousands of people getting swindled. We have to give a shout-out to Tilt, Scribble’s second crowdfunding platform. Tilt has been far more forthcoming with information than Kickstarter ever has with any crowdfunding campaign.

Precision Temperatures for Cooking or Whatever

sous-vide temp controller

If you have not heard of the sous-vide method of cooking you are not alone. This method uses a low temperature water bath to cook food in airtight plastic bags. Because the temperatures are much lower than normal the cooking time must be much longer and the actual temperature is very critical. The advantage is that the food is heated evenly without overcooking the outside. Since the food is bagged, it also retains moisture.

[Brian] put together a sous-vide control system to automatically maintain the correct temperature of a rice cooker. A temperature control unit was sourced on eBay for about $15. This is not a bad deal considering it has an LED display, control buttons, built-in relay and thermometer input. The control unit is mounted inside a project box with a few other components. The 120 volt AC line comes into the box where the neutral and ground are connected to the control unit and a standard outlet. The hot wire is connected directly to the control unit which determines if the hot wire is or isn’t connected to the outlet by using its built-in relay.

Continue reading “Precision Temperatures for Cooking or Whatever”

Sous Vadar

[Craig] pulled off a beautiful build with his Sous Vader project. The name is a geeky spin on sous vide, a method of cooking foods in water held at a precise temperature. Building your own setup at home saves a ton of money, but it’s also a lot of fun. This explains the frequency with which we see these builds here at Hackaday.

So this one has a flashy name, a fine-looking case, but the beauty continues on the internals. [Craig] posted an image with the cover off of the control unit and it’s absolutely gorgeous inside. Part of the reason for this is the circuit board he spun for the project which hosts the ATmega328 and interfaces with the LCD, buttons, temperature sensor, and mains-switching triac. But most of the credit is due to his attention to detail. The image on the right shows him prototyping the hardware. Since some of his meals take 20 hours to prepare it’s no wonder he found an out-of-the-way closet in which to do the testing.

Make sure to read all the way to the bottom of the post for some cooking tips. For instance, since he doesn’t have a vacuum sealer he uses zipper bags — lowering them into water to push out the air as they are sealed.

A simpler sous-vide hack

Here are the contronl modules for a sous-vide project over at Nerdkits. [Humberto] and crew continue doing a great job of focusing a project on one goal, then explaining the steps needed to get there. In this case they wanted to build their own sous-vide appliance that was cheap, and didn’t really require the user to deal with mains voltage. We like it because most of the parts can be found at a hardware store and big box store.

He started with a slow cooker, which is pretty standard. Next he needed a way to switch power to the device. Instead of using a solid state relay, he went for a standard dimmer switch. It’s build into a double gang electrical box, and controls an outlet which is occupying the second position in that box. Now current to the slow cooker is limited by the position of the dimmer. The next task was to add a cardboard frame which marries a servo motor to the dimmer’s knob.

With the control scheme in place [Humberto] needed a feedback sensor. He built his own water proof temperature probe by covering an LM34 temperature sensor with shrink tube and sealing the ends. Just one probe in the cooking water isn’t very reliable so he added a second between the slow cooker’s base and ceramic vessel to improve the performace of the PID algorithm. He goes into detail about that in the video after the break.

Continue reading “A simpler sous-vide hack”