Modest Motor Has Revolutionary Applications

Satellites make many of our everyday activities possible, and the technology continues to improve by leaps and bounds. A prototype, recently completed by [Arda Tüysüz]’s team at ETH Zürich’s Power Electronics Systems Lab in collaboration with its Celeroton spinoff, aims to improve satellite attitude positioning with a high speed, magnetically levitated motor.

Beginning as a doctoral thesis work led by [Tüysüz], the motor builds on existing technologies, but has been arranged into a new application — with great effect. Currently, the maneuvering motors on board satellites are operated at a low rpm to reduce wear, must be sealed in a low-nitrogen environment to prevent rusting of the components, and the microvibrations induced by the ball-bearings in the motors reduces the positioning accuracy. With one felling swoop, this new prototype motor overcomes all of those problems.

Continue reading “Modest Motor Has Revolutionary Applications”

Fail Of The Week (in 1996): The 7 Billion Dollar Overflow

The year was 1996, the European Space agency was poised for commercial supremacy in space. Their new Ariane 5 Rocket could launch two three-ton satellites into space. It had more power than anything that had come before.

The rocket rose up towards the heavens on a pillar of flame, carrying four very expensive and very uninsured satellites. Thirty-seven seconds later it self destructed. Seven billion dollars of RUD rained down on the local beaches near the Guiana Space Centre in Southern South America. A video of the failed launch is after the break.

The cause of all this was a single improper type cast in a bit of code that wasn’t even supposed to run during the actual launch. Talk about a fail.

There were two bits of code. One that measured the sideways velocity, and one that used it in the guidance system. The measurement side used a 64 bit variable, but the guidance side used a 16 bit variable. The code was borrowed from an earlier, slower rocket whose velocity would never grow large enough to exceed that 16 bits. The Ariane 5, however, could be described with a Daft Punk song, and quickly overflowed this value.

The code that caused the overflow was actually a bit of pre-launch software that aligned the rocket. It was supposed to be turned off before the rocket firing, but since the rocket launch got delayed so often, the engineers made it timeout 40 seconds into the launch so they didn’t have to keep restarting it.

The ESA never placed blame on a single contractor. The programmers had made assumptions. The engineers had made reasonable shortcuts to make their job easier. It had all made it through inspections, approvals, and finally the launch event.

They certainly learned from the event; the Ariane 5 rocket has flown 82 out of 86 missions successfully since then. It has at least five more launches contracted before it is retired in 2023 for the Ariane 6 rocket being developed now. This event also changed the way critical software and redundant systems were tested, bringing the dangers of code failure to the attention of the public for the first time.

If you want to read more, there is a great discussion on Reddit which tipped us off to this fail, a quite thorough Wikipedia article, and the original article that ran in the New York Times is mirrored here.

Continue reading “Fail Of The Week (in 1996): The 7 Billion Dollar Overflow”

First 360-degree Video From An Amateur Rocket?

Space. The final 360-degree frontier. These are the voyages of the Portland State Aerospace Society (PSAS), whose ongoing mission is to seek out new civilizations and launch rockets at them. For their latest adventure, they stuck a 360-degree video camera into their rocket. The resulting video is spectacular, from the pre-launch drama of an attack by a giant bee to the parachute release. It also works in Google Cardboard or Oculus Rift through the YouTube viewer.

The 360-degree video was made from video captured by five GoPro cameras stuck inside a custom-built module mounted inside the rocket body, then stitched together by PTGUI for the final video. The PSAS has been building modular rockets for some time, and this camera was mounted on their LV2 model. In this flight, the rocket reached an altitude of 4.7km (about 3 miles high), reaching a peak velocity of about 350 meters per second. That’s a pretty impressive height and speed, and you definitely get a good feeling for the dramatic climb of the rocket as it zooms up. This is some impressive stuff from a group of serious rocketeers who are boldly going where nobody has gone before…

Continue reading “First 360-degree Video From An Amateur Rocket?”

Kerbal Space Program for the Apple II

[Vince Weaver] tried to use his time machine to jump a few years in the future to get a less buggy version of Kerbal Space Program, but as usual with time travel, nothing went right and he ended up heading to 1987. Finding himself in an alternate timeline where KSP had been released for the Apple II, he brought back a copy.

Well, that’s the narrative proposed by [Vince Weaver] on his YouTube channel. The real story, and hack, being that he wrote a version of KSP for the Apple II in Applesoft Basic. He has used the language for the ridiculous before. You can build a rocket, select a pilot, launch, and if you’re lucky (or skilled), reach orbit.

We loaded up his disk image on an Apple II emulator and gave it a try. We managed to murde—lose a few pilots, but that was about it.  It was hard not to get distracted by the graphics and remember to point the rocket the right direction. Either way, it was a neat bit of fun in retro computing. Video after the break.

Continue reading “Kerbal Space Program for the Apple II”

OzQube-1: A Tiny Australian Satellite

Over the last couple of decades we have become used to the possibility of launching a satellite into orbit no longer being the exclusive preserve of superpowers. Since the first CubeSats were launched over a decade ago a myriad others have followed, and scarcely a week passes without news of another interesting project in this area.

OzQube-1 is just such a satellite, designed for imaging of the Southern Hemisphere, and it’s the brainchild of Australian [Stuart McAndrew]. He’s posted significant details of its design: it’s a PocketQube, at 50mm cubed, an eighth the volume of a CubeSat, and its main instrument is a 2 megapixel camera with a 25mm lens. Images will be transmitted to earth as slow-scan digital video via the 70cm amateur band, the dipole antenna being made from a springy tape measure which will unfurl upon launch. Attitude control is passive, coming from a magnet aligned to ensure the camera will be pointing Earthwards as it passes over the Southern Hemisphere. The project has a little way to go yet, but working prototypes have been completed and it has a Gofundme campaign under way to help raise the money for a launch.

There are plenty of Cubesat and other small satellite builds to be found on the web, here at Hackaday we’ve covered a significant number of them. Many of them are the fruits of well-funded university departments or other entities with deep pockets, but this one comes from a lone builder from Western Australia. We like that, and we wish OzQube-1 every success!

Software Update Destroys $286 Million Japanese Satellite

The Japanese X-ray telescope Hitomi has been declared lost after it disintegrated in orbit, torn apart when spinning out of control. The cause is still under investigation but early analysis points to bad data in a software package pushed shortly after an instrument probe was extended from the rear of the satellite. JAXA, the Japanese space agency, lost $286 million, three years of planned observations, and a possible additional 10 years of science research.

Hitomi, also known as ASTRO-H, successfully launched on February 17, 2016 but on March 26th catastrophe struck, leaving only pieces floating in space. JAXA, desperately worked to recover the satellite not knowing the extent of the failure. On April 28th they discontinued their efforts and are now working to determine the reasons for the failure, although a few weeks ago they did provide an analysis of the failure sequence at a press conference.

Continue reading “Software Update Destroys $286 Million Japanese Satellite”

A $1000 Tiny Personal Satellite

If you ever read any old magazines, you might be surprised at how inexpensive things used to be. A U.S. postage stamp was six cents, a gallon of gas was $0.34, and the same amount of milk was $1.07. Everything is relative, though. The average household income back then was under $8,000 a year (compared to over $53,000 a year in 2014). So as a percentage of income, that milk actually cost about seven bucks.

The same is true of getting into orbit. Typical costs today just to get something into orbit has gone from–no pun intended–astronomical, to pretty reasonable. Lifting a pound of mass on the Space Shuttle cost about $10,000. On an Atlas V, it costs about $6,000. A Falcon Heavy (when it launches) will drop the cost to around $1,000 or so. Of course, that’s just the launch costs. You still have to pay for whatever you want to put up there. Developing a satellite can be expensive. Very expensive.

Continue reading “A $1000 Tiny Personal Satellite”