Ok Google. Navigate to the International Space Station

If you’d have asked most people a few decades ago if they wanted a picture of every street address in the world, they would have probably looked at you like you were crazy. But turns out that Google Street View is handy for several reasons. Sure, it is easy to check out the neighborhood around that cheap hotel before you book. But it is also a great way to visit places virtually. Now one of those places is the International Space Station (ISS).

[Thomas Pesquet] in a true hack used bungee cords and existing cameras to take panoramas of all 15 ISS modules. Google did their magic, and you can enjoy the results. You can also see a video on how it was all done, below.

Continue reading “Ok Google. Navigate to the International Space Station”

Hitching a Ride on a Missile

Before the Saturn V rocket carried men to the moon, a number of smaller rockets carried men on suborbital and orbital flights around the Earth. These rockets weren’t purpose-built for this task, though. In fact, the first rockets that carried people into outer space were repurposed ballistic missiles, originally designed to carry weapons.

While it might seem like an arduous task to make a ballistic missile safe enough to carry a human, the path from a weapons delivery system to passenger vehicle was remarkably quick. Although there was enough safety engineering and redundancy to disqualify the space program as a hack, it certainly was a clever repurposing of the available technology. Read on for the full story.

Continue reading “Hitching a Ride on a Missile”

Hey NASA, Do You Want Your Stuff Back?

What would you do if you found hidden away artifacts of aerospace technology from the Apollo era?

You call NASA.

Two hulking computers — likely necessitating the use of a crane to move them — and hundreds of tape reels were discovered in the basement of a former IBM engineer by their heir and a scrap dealer cleaning out the deceased’s home. Labels are scarce, and those that are marked are mostly from the late 1960s through the mid 1970s, including data from the Pioneer 8 to 11 missions, as well as the Helios missions.

Continue reading “Hey NASA, Do You Want Your Stuff Back?”

Bicycle Racing In Space Could be a Thing

It’s 2100 AD, and hackers and normals live together in mile-long habitats in the Earth-Moon system. The habitat is spun up so that the gravity inside is that of Earth, and for exercise, the normals cycle around on bike paths. But the hackers do their cycling outside, in the vacuum of space.

How so? With ion thrusters, rocketing out xenon gas as the propellant. And the source of power? Ultimately that’s the hackers’ legs, pedaling away at a drive system that turns two large Wimshurst machines.

Those Wimshurst machines then produce the high voltage needed for the thruster’s ionization as well as the charge flow. They’re also what gives the space bike it’s distinctly bicycle-like appearance. And based on the calculations below, this may someday work!

Continue reading “Bicycle Racing In Space Could be a Thing”

OSM (Pronounced Awesome) Hardware Makes DNA in Space

OSM stands for Oligonucleotide Synthesizer designed for use in Microgravity, meaning that it’s a device that makes arbitrary DNA strands (of moderate length) in space. Cool eh? I’ve been working on this project for the last eight months with a wonderful team of fellow hackers as part of the Stanford Student Space Initiative, and I’d like to share what we’re doing, what we’ve already done, and where we’re going.

Why space? Well, first of all, space is cool. But more seriously, access to arbitrary DNA in space could accelerate research in a plethora of fields, and the ability to genetically engineer bacteria to produce substances (say on a martian colony) could mean the difference between death and a life-saving shot. In short, it’s hard to predict the exact DNA one might need for research or practical use before hand.

First, as Hackaday tends to be a little light on biology terminology, we need to get a little vocabulary out of the way to grease the ways of communication. If you have a Ph.D. in synthetic biology, you might want to skip this section. Otherwise, here are five quick terms that will make your brain bigger so stay with me!

Continue reading “OSM (Pronounced Awesome) Hardware Makes DNA in Space”

Keep an Eye on the Sky With rDuinoScope

We’ve all enjoyed looking up at a clear night sky and marveled at the majesty of the stars. Some of us have even pointed telescopes at particular celestial objects to get a closer view. Anyone who’s ever looked at anything beyond Jupiter knows the hassle involved.  It is most unfortunate that the planet we reside on happens to rotate about a fixed axis, which makes it somewhat difficult to keep a celestial object in the view of your scope.

It doesn’t take much to strap a few steppers and some silicon brains to a scope to counter the rotation of earth, and such systems have been available for decades. They are unfortunately quite expensive. So [Dessislav Gouzgounov] took matters into his own hands and developed the rDuinoScope – an open source telescope control system.

Based on the Arduino Due, the systems stores a database of 250 stellar objects. Combined with an RTC and GPS, the rDunioScope can locate and lock on to your favorite nebula and track it, allowing you to view it in peace. Be sure to grab the code and let us know when you have your own rDuinoScope set up!


NASA’s 2017-2018 Software Catalog is Out

Need some help sizing your beyond-low-Earth-orbit vehicle? Request NASA’s BLAST software. Need to forecast the weather on Venus? That would be Venus-GRAM (global reference atmospheric model). Or maybe you just want to play around with the NASA Tensegrity Robotics Toolkit. (We do!) Then it’s a good thing that part of NASA’s public mandate is making their software available. And the 2017-2018 Software Catalog (PDF) has just been released.

Unfortunately, not everything that NASA does is open source, and a substantial fraction of the software suites are only available for code “to be used on behalf of the U.S. Government”. But still, it’s very cool that NASA is opening up as much of their libraries as they are. Where else are you going to get access to orbital debris engineering models or cutting-edge fluid dynamics modelers and solvers, for free?

We already mentioned this in the Links column, but we think it’s worth repeating because we could use your help. The catalog is 154 pages long, and we haven’t quite finished leaf through every page. If you see anything awesome inside, let us know in the comments. Do any of you already use NASA’s open-source software?