A $1000 Tiny Personal Satellite

If you ever read any old magazines, you might be surprised at how inexpensive things used to be. A U.S. postage stamp was six cents, a gallon of gas was $0.34, and the same amount of milk was $1.07. Everything is relative, though. The average household income back then was under $8,000 a year (compared to over $53,000 a year in 2014). So as a percentage of income, that milk actually cost about seven bucks.

The same is true of getting into orbit. Typical costs today just to get something into orbit has gone from–no pun intended–astronomical, to pretty reasonable. Lifting a pound of mass on the Space Shuttle cost about $10,000. On an Atlas V, it costs about $6,000. A Falcon Heavy (when it launches) will drop the cost to around $1,000 or so. Of course, that’s just the launch costs. You still have to pay for whatever you want to put up there. Developing a satellite can be expensive. Very expensive.

Continue reading “A $1000 Tiny Personal Satellite”

Listen to Meteors Live

When the big annual meteor showers come around, you can often find us driving up to a mountaintop to escape light pollution and watching the skies for a while. But what to do when it’s cloudy? Or when you’re just too lazy to leave your computer monitor? One solution is to listen to meteors online! (Yeah, it’s not the same.)

Meteors leave a trail of ionized gas in their wake. That’s what you see when you’re watching the “shooting stars”. Besides glowing, this gas also reflects radio waves, so you could in principle listen for reflections of terrestrial broadcasts that bounce off of the meteors’ tails. This is the basis of the meteor burst communication mode.

[Ciprian Sufitchi, N2YO] set up his system using nothing more than a cheap RTL-SDR dongle and a Yagi antenna, which he describes in his writeup (PDF) on meteor echoes. The trick is to find a strong signal broadcast from the earth that’s in the 40-70 MHz region where the atmosphere is most transparent so that you get a good signal.

This used to be easy, because analog TV stations would put out hundreds of kilowatts in these bands. Now, with the transition to digital TV, things are a lot quieter. But there are still a few hold-outs. If you’re in the eastern half of the USA, for instance, there’s a transmitter in Ontario, Canada that’s still broadcasting analog on channel 2. Simply point your antenna at Ontario, aim it up into the ionosphere, and you’re all set.

We’re interested in anyone in Europe knows of similar powerful emitters in these bands.

As you’d expect, we’ve covered meteor burst before, but the ease of installation provided by the SDR + Yagi solution is ridiculous. And speaking of ridiculous, how about communicating by bouncing signals off of passing airplanes? What will those ham radio folks think of next?

Stolen Tech: The Soviet Shuttle

The US Space Shuttle program is dead and buried. The orbiters can now be found in their permanent homes in the Air and Space Museum, Kennedy Space Center, and the California Science Center. The launch pads used by the shuttles over a career of 135 launches are being repurposed for vehicles from SpaceX and the Space Launch System. Yes, some of the hardware and technology will be reused for NASA’s next generation of heavy launch vehicles, but the orbiter – a beautiful brick of a space plane – is forever grounded.

The Space Shuttle was a product of the cold war, and although the orbiters themselves were never purely military craft, the choices made during the design of the Space Shuttle were heavily influenced by the US Air Force. The Soviet Union was keenly aware the United States was building a ‘space bomber’ and quickly began development of their own manned spaceplane.

While this Soviet Shuttle would not be as successful as its American counterpart — the single completed craft would only fly once, unmanned — the story of this spaceplane is one of the greatest tales of espionage ever told. And it ends with a spaceship that was arguably even more capable than its American twin.

Continue reading “Stolen Tech: The Soviet Shuttle”

Sputnik’s Transmitter Beeps Again

Sputnik. The first artificial satellite, the launch of which precipitated the space race. Without the frenetic pace of technological advancement as the USA and the USSR vied with each other during the decade following its launch it is safe to say that we might not yet have many of the tools and components we take for granted as electronics enthusiasts and makers today.

[Frank Waarsenburg PA3CNO] has taken on the interesting task of recreating one of the Sputnik radio transmitters using a set of the original Russian tubes.

Sputnik itself was an astounding achievement for the team of engineers and scientists who put it into orbit, but the drive to beat the USA to the post within the 1957 International Geophysical Year meant that it was a surprisingly simple device. A sphere pressurised with nitrogen and with those iconic whip antennas mounted on its outside, containing a battery, 20 and 40 MHz tube radio transmitters, and a fan cooling system. Its design was a Soviet state secret, but in 2013 [Oleg, RV3GM] located the schematic used for the transmitter.

The tubes are slightly unusual, being a wire-ended design with all electrodes mounted on rods the length of the glass envelope. This design feature gave them a resistance to acceleration and vibration, making them suitable for use in aircraft, missiles, and rockets.

[Frank] faced one or two hurdles during his construction, including the development of a suitable power supply and finding an unfortunate bug in the Russian schematic. If you speak Dutch or are prepared to use a translation tool his full write-up can be found in the Dutch-language RAZzies magazine, December issue featuring the power supply (PDF, Dutch), and January issue featuring the transmitter (PDF, Dutch).

The Sputnik satellite has not appeared on its own in these pages before, but we have recently featured the early OSCAR amateur radio satellites and the revival of a piece of space-race-era Soviet rocket technology.

Via [Stefan, HB9TWS], whose English-language coverage of the transmitter was of great help.

The Price of Space

Many engineers of a certain age have one thing in common: Their early interest in science and engineering came from watching the US and Russian space programs. To me, regardless of any other benefit from the space program (and there are many), that ability to inspire a future generation of engineers made the entire program worthwhile.

We live in a world where kids’ role models are more likely to be sports or entertainment figures that have regular visits to police stations, jails, and rehab centers. The value of having role models that “do science” is invaluable.

This time of the year is a dark time for NASA missions, though. On January 27, 1967, the Apollo I crew (Grissom, White, and Chaffee) died in a fire. The investigation led to NASA limiting how much Velcro you can use in a cabin and moving away from pure oxygen in the cabin.

Continue reading “The Price of Space”

Hackaday Dictionary: The Global Positioning System (GPS)

One of the fundamental technologies of modern gadgets is the Global Positioning System (GPS). Using signals from satellites orbiting the earth, a GPS receiver can pin down its location with remarkable accuracy: the latest generation of Civilian Navigation Signals (CNAV) sent by the US GPS system has an accuracy of less than half a meter (about 3 feet). These signals also contain the time, accurate to within milliseconds, which makes it perfect for off-line dataloggers and systems that require very accurate timing. That’s a powerful combination that has made GPS one of the main technologies behind the mobile revolution, because it lets gadgets know where (and when) they are.

Continue reading “Hackaday Dictionary: The Global Positioning System (GPS)”

Congo’s Space Program

Deep in the hills of the Democratic Republic of Congo, you’ll find men and women hard at work providing a living for their family. You might find some working in one of the nation’s mines which are rich in natural resources.  Others will be working the farms or participating in one of many diverse cultural customs. If you head two hours via dirt road from the capital city of Kinshasa, however, you’ll find something a bit out of place for the area – an active space program.

On a vast yam farm, [Jean-Patrice Keka] has single-handedly developed several rockets that have flirted with the space_01elusive zero gravity environment. [Mr. Keka’s] ‘Mission Control’ is a corrugated metal shed lined with CRT monitors and dated computers, but don’t let this fool you. His vision and drive are just as great as any space faring nation.

His intellect has made him a small fortune in commodities trading, and allows him the luxury to finance his operation without the need of government help. From time to time, he employs the help of local engineering students to get his rockets off the ground. Their payload has included rats and insects, with one launch reaching 10 miles of altitude and the current project aiming for 120 miles. [Mr. Keka] has become a national hero via the televised broadcasts of the launches, and has gotten the attention of national government officials. They even flew him to the US once to petition funding for his work.

[Mr. Keka] and his story should serve as an inspiration to all inspiring hackers and makers to pursue their dreams.

Thanks to [Cmh62] for the tip.