Wireless Rocket Motor Analyzer Tests Rockets, Saves Fingers

Testing rocket motors is a dangerous business, as they have an annoying habit of releasing all of that energy a little quicker than you might like. [Jeff Hopkins] knows this, so he made his own wireless rocket motor analyzer that allows him to trigger, test and monitor rocket motors from a safe distance. This involves more than just pushing a button and watching them go whoosh: his platform measures the thrust of the prototype over 90 times a second and transmits this data to him remotely for logging and later analysis. His current prototype can measure engines with up to 400 lbs of thrust. That is a lot, so it is a good thing that his rig can also remotely arm, fire or safe the motors, all over a 70cm wireless radio link that keeps him safely out of the way. It is also built of cheap parts, so if a RUD (Rapid Unplanned Disassembly) does occur, it won’t cost him much to rebuild and start again.

This project is part of a bigger plan: [Jeff] is looking to build a high-power launch platform that can launch an electronics platform high above the earth. Could this be the beginning of the race to be the first hacker in space? We shall see…

“The Martian” is a Hacker’s Dream – In Space

You’ve probably seen the ads and heard the buzz about the movie “The Martian”, where a Mars astronaut, Mark Watney, is left on the planet and presumed dead. You may have read our previous article about the eponymous book by Andy Weir. That article wondered if the movie would do justice to the book.

It did.

In summary, Watney survives by creating one glorious, but realistic, hack after another. NASA and the other astronauts support him by coming up with some marvelous hacks along the way. One, encompassing the entire spaceship containing the surviving astronauts, is developed by The_Martian_film_posterthe ship’s Captain, Melissa Lewis. Okay, that one may not be totally realistic but it’s mind blowing.

Reading about the hacks is one thing. Seeing them on the screen adds another dimension. Matt Damon, as Watney, mixing his own waste with water to fertilize potatoes is an image you cannot create in your mind’s eye.

One usual trick Hollywood plays is to switch the actions of minor characters to the major characters. That leaves out the ‘little guy’ in the backroom who frequently has the great idea. Often that’s us. Here they kept the woman who first saw Watney moving equipment on Mars and the astrophysicist who, well, I won’t spoil it, saved the day.

For hackers, this movie should be paired with “Interstellar”, because of their fidelity to science. “The Martian” contains actual NASA technology and plans for Mars missions. “Interstellar”, well, what can you say bad about a movie that originated in the mind of Caltech Theoretical Physicist, Kip Thorne. The science in this movie is so real Thorne wrote an entire book describing it, and managed a few scientific papers based on the research required to accurately present the black hole.

It’s a wondrous trend to see science fiction movies based on real science and not being dumbed down to the point of insult. You know it has to be good if XKCD did a comic. Surprisingly, Hollywood didn’t do a ‘hack’ job on either of these movies.

Movie trailer after the break.

Continue reading ““The Martian” is a Hacker’s Dream – In Space”

Original Hackers’ New Satellite in Orbit

Ham radio put another satellite in orbit, the FOX-1A. Not many groups have the long-term hacking credentials of hams. Their tradition extends back to the first days of radio communications, which puts the group well over a century old. This newest satellite launched in the early hours of October 8th and, after deployment, was heard later the same day. Anyone with the ability to listen on the 2m band can hear FOX-1A. Tatlas-v-rocket-launches-nrol55-cubesatshose licensed as hams will be able to communicate using a 70cm transmitter while listening on 2m.

This satellite is using the cube-sat format and ‘ride sharing’ through a program offered by NASA and the National Reconnaissance Office (NRO). Twelve other nano-satellites rode along with the FOX-1A. These 10 cm cubes are used for commercial, educational, and non-profit projects. The purpose of today’s satellites covered not only ham radio but educating students in satellite construction, land management by American Indian tribes, and space to ground laser communication. Yeah, what’s cooler than space lasers? Video about the FOX-1A after the break.

We’ve seen some interesting ideas for cube-sats. And if you want to think about the ground portion of a system like this, check out the SatNOGs story — winners of the 2014 Hackaday Prize.

Continue reading “Original Hackers’ New Satellite in Orbit”

CubeSat Challenge Winners Show Interesting Design Approaches

The winners are in for the GrabCad CubeSat Challenge, which asked designers to rethink the way that CubeSats are built. These tiny 10 cm square satellites are the hot thing in orbit, and the competition was looking for new ways to build and pack more into this tiny space. The winners offered some fascinating new approaches to building CubeSats, and some excellent design lessons that anyone can use.

The winner was FoldSat, by [Paolo Minetola]. His excellent design is a 3D printed folding case for a satellite that is built from just two 3D printed parts. The case can be snapped together and offers multiple ways to mount electronic components and sensors inside. [Paolo] estimates that it could save 40% time and 30% materials from existing CubeSat casings, which means more space inside and more time to build. It is an excellent example of how 3D printing can make things cheaper, easier and better, all at the same time.

Continue reading “CubeSat Challenge Winners Show Interesting Design Approaches”

Dutch Student Team Aims To Launch Rocket to 50KM

Space. The final frontier. These are the voyages of DARE, the [Delft Aerospace Rocket Engineering] team, who are looking to launch a rocket to 50 kilometers (about 31 miles) to break the European amateur rocketry record later this year.

This brave crew of students from the Delft Technical University is boldly going where no European amateur has gone before with a rocket of their own design called Stratos II, a single stage hybrid rocket which is driven by a DHX-200 Aurora engine. This self-built engine uses a combination of solid Sorbitol and candlewax fuel, with liquid Nitrous Oxide as the oxidizer. The rather unlikely sounding combination should produce an impressive 12,000 Newtons of maximum thrust, and a total of 180,000 Ns of impulse. It’s difficult to make a proper comparison, but the largest model rocket motor sold in the US without a special license (a class G) has up to 160 Ns of impulse and the largest engine ever built by amateurs had 411,145 Ns of impulse.

The team did try a launch last year, but the launch failed due to a frozen fuel valve. Like any good engineering team, they haven’t let failure get them down, and have been busy redesigning their rocket for another launch attempt in the middle of October, Their launch window begins on October 13th at a military base in southern Spain, and we will be watching their attempt closely. Godspeed, DARE!

In commercial space news, yesterday NASA tested the RS-25 engine that will be used in the Space Launch System — the rocket it’s developing to take astronauts to the moon and mars. Also, the NTSB report on the tragic crash of SpaceShipTwo was released a few weeks ago. The report found that the feather mechanism was unlocked by the copilot at the wrong time, leading to the crash. Future system improvements will be put in place to ensure this doesn’t happen again.

Update – The Stratos II is a single-stage rocket, not a two-stage, as an earlier version of this article described. 8/16/15

Continue reading “Dutch Student Team Aims To Launch Rocket to 50KM”

Ask Hackaday: Quadcopter in Near Space?

Your mission, should you choose to accept it, is to send a quadcopter to near space and return it safely to the Earth. Getting it there is not that difficult. In fact, you can get pretty much anything you want to near space with a high altitude weather balloon. Getting it back on the ground in one piece is a whole other ballgame.

Why does someone need to do this? Well, it appears the ESA’s StarTiger team is taking a card out of NASA’s book and wants to use a Sky Crane to soft land a rover on Mars. But instead of using rockets to hold the crane steady in the Martian sky, they want to use…you guessed it, a quadcopter. They’re calling it the Dropter.

quadcopter on mars

At first glance, there seems to be a lot wrong with this approach. The atmosphere on Mars is about 100 times less dense than the Earth’s atmosphere at sea level. How do props operate in these conditions? Testing would need to be done of course, and the Earth’s upper atmosphere is the perfect place to carry out such testing. At 100,000 feet, the density of the stratosphere is about the same as that of the Martian surface atmosphere. AND 100,000 feet is prime high altitude balloon territory.  Not to mention the gravity on Mars is about 38% of Earth’s gravity, meaning a 5.5 pound model on Earth could accurately represent a 15 pound model on Mars.

With all of these facts taken into consideration, one can conclude that realistic testing of a scale model Martian quadcopter is within the grasp of the hacker community. We’ve seen some work on high altitude drones before, but never a quadcopter.

Now it’s your turn to do something no one has ever done before. Think you got what it takes to pull such a project off? Let us know what your approach to the challenge would be in the comments.

Continue reading “Ask Hackaday: Quadcopter in Near Space?”

Rocket Controls Fit for a Kerbal

Kerbal Space Program is a space simulation game. You design spacecraft for a fictional race called Kerbals, then blast those brave Kerbals into space. Sometimes they don’t make it home.

If controlling spacecraft with your WASD keys isn’t immersive enough for you, [marzubus] has created a fully featured KSP control console. It sports a joystick, multiple displays, and an array of buttons and switches for all your flight control needs. The console was built using a modular approach, so different controls can be swapped in and out as needed.

Under the hood, three Arduinos provide the interface between the game and the controls. One Arduino Mega runs HoodLoader2 to provide joystick data over HID. A second Mega uses KSPSerialIO to communicate with the game over a standard COM port interface. Finally, a Due interfaces with the displays, which provide information on the current status of your spacecraft.

All of the parts are housed in an off the shelf enclosure, which has a certain Apollo Mission Control feel to it. All [marzubus] needs now is a white vest with a Kerbal badge on it.