Brute Force Used To Crack A Key Logger’s Security Code

The USB device seen plugged in on the right of this image was found in between the keyboard and USB port of the company computer belonging to a Senior Executive. [Brad Antoniewicz] was hired by the company to figure out what it is and what kind of damage it may have done. He ended up brute forcing an unlock code to access the device, but not before taking some careful steps along the way.

From the design and placement the hardware was most likely a key logger and after some searching around the Internet [Brad] and his colleagues ordered what they thought was the same model of device. They wanted one to test with before taking on the actual target. The logger doesn’t enumerate when plugged in. Instead it acts as a pass-through, keeping track of the keystrokes but also listening for a three-key unlock code. [Brad] wrote a program for the Teensy microcontroller which would brute force all of the combinations. It’s a good thing he did, because one of the combinations is a device erase code hardwired by the manufacturer. After altering the program to avoid that wipe code he successfully unlocked the malicious device. An explanation of the process is found in the video after the break.

Continue reading “Brute Force Used To Crack A Key Logger’s Security Code”

Scratch-built Motor Uses A Clever Design

[Lou] is on a hot streak when it comes to interesting builds. This time around he made his own motor using wood, PVC, some fasteners, and a bunch of enameled wire.

His method of building a commutator is intriguing. He first builds a rotor by cutting two opposing sides off of a PVC four-way connector and pushing a short galvanized pipe through what’s left. After adding two PVC nubs with caps and nails as pivot points he wraps the PVC and metal pipe with a continuous length of enameled wire. The enamel is then sanded off the windings around the PVC, and half is covered with electrical tape. The spinning rotor will cause the brushes to contact the bare wire during half of the rotation, and be insulated by the tape during the other half. The video after the break shows the motor in action, then walks you through each step of the build.

If you liked this video you should check out [Lou’s] water bottle rocket launcher, or his automated Ping Pong table topper which stores the game in the ceiling.

Continue reading “Scratch-built Motor Uses A Clever Design”

.NET For The STM32 F4 Discovery Board

Here’s a technique that will let you use the .NET framework on an STM32 Discovery board. [Singular Engineer] was happy to learn that the .NET Micro Framework had been ported for STM32 chips. It’s doesn’t look like the port has hit a stable version yet, but these instructions will be enough to get you up and running. This lets you use managed code in the C# language to program an embedded device: the STM32 F4 Discovery board.

After flashing a new bootloader to the board a driver needs to be added for Windows to communicate with it. Above you can see that the board will enumerate as ‘STM32 .Net Test’. Once the driver is installed the rest of the firmware can be loaded on the board using a GUI supplied with the NETMF for STM32 package. That takes care of prepping the hardware, the rest is a painless process of configuring Visual Studio to use the board as a target. The ‘Hello World’ application then uses C# to blink an LED.

Rewiring A Free Carnival Sign

Late last September, Hackaday along with other hackerspaces including North Street Labs, 1.21 Jigawatts, Maker Twins, made their way to the NYC Maker Faire via the Red Bull Creation contest. The objectives of the contest were simple: build a game in 72 hours, have people vote on it, and join the Red Bull crew in Queens for a carnival-like atmosphere.

When the Maker Faire was over, Red Bull had some leftover props from their Midway at Maker Faire setup, including a few illuminated carnival signs. Without any use for them, they graciously gave Hackaday, North Street, Maker Twins and the Jigawatts the signs to their respective rides.

Now that things have settled down and the rides have returned to their home base, the folks over at North Street decided to improve their sign. At Maker Fair, these signs were illuminated by 50 incandescent bulbs, all wired on the same circuit. [Steve] over at North Street had the awesome idea of adding a persistence of vision aspect to the sign, so work began on wiring every fourth bulb in series.

To drive the light circuits, North Street repurposed the Arduino Relay shield originally used for the lights on the Centrifury, their competitive centrifuge and spinning hell of a game. In the video after the break, you can see the addition of POV lights really brings out the carnival atmosphere. A literally brilliant build, and a wonderful addition to the scariest game ever made.

Continue reading “Rewiring A Free Carnival Sign”

Graphing The Efficiencies Of LED Light Strips

After adding a few LED light strips above his desk, [Bogdan] was impressed with the results. They’re bright, look awesome, and exude a hacker aesthetic. Wanting to expand his LED strip installation, [Bogdan] decided to see if these inexpensive LED strips were actually less expensive in the long run than regular incandescent bulbs. The results were surprising, and we’ve got to give [Bogdan] a hand for his testing methodology.

[Bogdan]’s test rig consists of a 15 cm piece of the LED strip left over from his previous installation. A Taos TSL2550 ambient light sensor is installed in a light-proof box along with the LED strip, and an AVR microcontroller writes the light level from the sensor and an ADC count (to get the current draw) of the rig every 6 hours.

After 700 hours, [Bogdan]’s testing rig shows some surprising results. The light level has decreased about 12%, meaning the efficiency of his LED strip is decreasing. As for projecting when his LEDs will reach the end of their useful life, [Bogdan] predicts after 2200 hours (about 3 months), the LED strip will have dropped to 70% of their original brightness.

Comparing his LED strip against traditional incandescent bulbs – including the price paid for the LED strip, the cost of powering both the bulb and the strip, the cost of the power supply, and the time involved in changing out a LED strip, [Bogdan] calculates it will take 2800 hours before cheap LEDs are a cost-effective replacement for bulbs. With a useful life 600 hours less than that, [Bogdan] figures replacing your workshop lighting with LED strips – inexpensive though they are – isn’t an efficient way to spend money.

Of course with any study in the efficiency of new technology there are bound to be some conflating factors. We’re thinking [Bogdan] did a pretty good job at gauging the efficiency of LED strips here, but we would like to see some data from some more expensive and hopefully more efficient LED strips.

Controlling A Cockroach Leg With Your Mind

If one hack that controls amputated cockroach legs this week wasn’t enough for you, we’ve got another.

Earlier this week we saw two neuroscientists at Backyard Brains put on a show at a TED talk by connecting an amputated cockroach leg (don’t worry, they grow back) to a $100 electronic device called the SpikerBox. The SpikerBox allows students to explore the world of axons and action potentials by listening in on the electronic signals generated by the hair on the legs of a cockroach. For the finale for their TED talk, the SpikerBox guys attached an MP3 player to the cockroach leg, causing the now dead appendage to dance a little jig.

This new build – the Salt Shaker from Thinker Thing again allows students to amputate cockroach legs, pin them down with electrodes, and cause muscle contractions with the sound of science. Thinker Thing took this one step further than the neuroscientists at Backyard Brains; now you can control a cockroach leg with your mind.

The folks at Thinker Thing are using an off the shelf EEG system from Emotiv to capture the alpha, beta, and delta brainwaves of their new human test subjects. By interpreting these brain signals, they can convert these small variations in cerebral electrical activity to sound files. From there, it’s simply a matter of plugging in the Salt Shaker and moving a cockroach leg with your mind.

In the video after the break you can check out the folks at Thinker Thing playing around with their Salt Shaker and controlling a cockroach leg with a team member’s mind.

Continue reading “Controlling A Cockroach Leg With Your Mind”

Exploring The Mandelbrot Set In Real Time

The Mandelbrot set – the fractal ‘snowman turned on its side’ seen above – has graced the covers of magazines, journals, and has even been exhibited in art galleries. An impressive feat for what is nothing more than a mathematical function, and has become something of an obsession for [Chiaki Nakajima].

Even on modern computers, generating an image of a portion of the Mandelbrot set takes a good bit of time. When [Chiaki] discovered this fractal in the mid-1980s, the computers of the day took hours to generate a single, low-resolution image. Real-time zooming and scrolling was impossible but [Chiaki] made the best of what he had on hand and built Pyxis, a Mandelbrot set generator made entirely out of TTL logic chips (Google Translate here).

The original Pyxis connected to a desktop computer via a breakout box. while a special program toggled the bits and registers inside the Pyxis to generate pictures of the Mandelbrot set a thousand times faster than the CPUs of the day could muster.

Time marches on, and the original logic chip Pyxis is can be easily surpassed by even the slowest netbooks. There is, however, another way to build a hardware Mandelbrot set generator: FPGAs.

A few years ago, [Chiaki] began work on the Pyxis2010 (translation), an FPGA-based Mandelbrot set generator able to dynamically zoom and pan around the world’s most popular fractal. Built around an Altera Cyclone III FPGA he picked up from Digikey for $600 (no, not a dev board, just a bare chip), [Chiaki] began deadbugging his circuit directly onto the pins of the hugely expensive FPGA. A man with a steady hand and no fear if there ever was one.

Instead of connecting his Mandelbrot generator to a computer and using it as a co-processor, [Chiaki] decided he wanted something more portable. He found an old Sony PSP, removed the LCD screen, and integrated it into his circuit. After a careful bit of dremeling and fabrication, [Chiaki] had a hand-held Mandelbrot generator that is able to display images of the world’s most famous fractal faster than any desktop computer.

It goes without saying this build is incredible. The technical skill to build an insanely fast Mandelbrot generator on an FPGA is astonishing, but basing it off a logic-chip based build reaches into the realm of godliness. You can check out a video of this amazing build after the break.

Props to [Ian Finder] for sending this one in.

Continue reading “Exploring The Mandelbrot Set In Real Time”