Motion Sensitive RGB Lamp Can Standby For 3 Years

Ooooh, nice enclosure! This is a little motion sensing lamp which [Krazatchu] built a few years back as a Mother’s Day gift. The PIR sensor is easy enough to see as the white dome on the front of the case. But look closely below that and you’ll see the LDR which it uses to keep the thing asleep during the day. This is intended to save on batteries but the original version still ate through them like crazy. This year he gutted it and worked out a much more power-friendly design.

He moved to a TLC1079 OpAmp which greatly reduced power consumption when reading from the PIR sensor. The microcontroller was also upgraded from an ATtiny13 to an ATmega328, making the new version Arduino compatible. It puts itself to sleep and keeps the lights out during the day, drawing just 0.08 mA. When driving the RGB LED the lamp pulls about 50 mA. That should still last a while on three AA batteries but we’d still recommend using rechargeables.

Continue reading “Motion Sensitive RGB Lamp Can Standby For 3 Years”

A Simpler Sous-vide Hack

Here are the contronl modules for a sous-vide project over at Nerdkits. [Humberto] and crew continue doing a great job of focusing a project on one goal, then explaining the steps needed to get there. In this case they wanted to build their own sous-vide appliance that was cheap, and didn’t really require the user to deal with mains voltage. We like it because most of the parts can be found at a hardware store and big box store.

He started with a slow cooker, which is pretty standard. Next he needed a way to switch power to the device. Instead of using a solid state relay, he went for a standard dimmer switch. It’s build into a double gang electrical box, and controls an outlet which is occupying the second position in that box. Now current to the slow cooker is limited by the position of the dimmer. The next task was to add a cardboard frame which marries a servo motor to the dimmer’s knob.

With the control scheme in place [Humberto] needed a feedback sensor. He built his own water proof temperature probe by covering an LM34 temperature sensor with shrink tube and sealing the ends. Just one probe in the cooking water isn’t very reliable so he added a second between the slow cooker’s base and ceramic vessel to improve the performace of the PID algorithm. He goes into detail about that in the video after the break.

Continue reading “A Simpler Sous-vide Hack”

IPhone Wielding Guitar Adds Tip Of Your Finger Or Tip The Instrument Control

[Rob Morris] has been hard at working improving his guitar augmentation techniques. Here he’s demonstrating the use of an iPhone to control the effects while he plays. This builds on the work he shared a few years ago where he strapped a Wii remote to the body of his ax.

Just like the Wii remote, the iPhone includes an accelerometer. As you would expect the best parts of the older hack made it into this one, but the inclusion of the touch screen adds a lot more. In the clip after the break he starts by showing off the screen controlling a whammy bar functionality. But we really love the octave offset feature that comes next. This kind of sound manipulation simply can’t be done using a purely physical method (like the whammy bar can). But he’s not done yet. The demo finishes with a Theremin feature. You’ll notice he plucks a string but no sound comes out until he starts touching the screen. This turns it into an entirely different type of instrument.

The only info we have about putting this together is the list of packages he’s using:  TouchOSC, Max/Msp, and GuitarRig

Continue reading “IPhone Wielding Guitar Adds Tip Of Your Finger Or Tip The Instrument Control”

Prototyping A Solar Charger For Your Truck

[Bryan] got his hands on a solar panel and decided to take it on the road rather than throwing it on the roof of the house. On sunny days it will top off the car battery, letting him use his stereo in the middle of nowhere without needing to keep the engine running. Instead of buying a ready-made solution he chose to design and build his own charging circuitry.

The charger uses an Arduino, which draws its own power from the panel via a regulator. It senses the voltage level of the battery and the available juice from the panel, connecting or disconnecting it from the electrical system as necessary. The system includes a set of LED indicators, which he installed in the dashboard near the cigarette lighter. This also gave him an excuse to install a voltmeter which uses a 2.5 digit seven segment display to read out the battery voltage. You can see a brief overview after the break.

Continue reading “Prototyping A Solar Charger For Your Truck”

Alarm Clock Wakes You Like [Lawrence Welk]

That awful buzzing/beeping beside the bed in the morning might not seem so bad if it were a cascade of bubbles instead. At least that’s what [Will] is hoping for. He took a child’s toy and turned it into a bubble blowing alarm clock.

We’re guessing you’re not going to be too happy with the alarm settings feature. This isn’t using a real-time clock, or any clock at all really. [Will] rolled his own light detection circuit using a PNP transistor whose base is controlled by an LDR. When the light level in the room reaches a certain threshold the bubbles start streaming out of the front of this thing. He test the system in the video by switching a lamp on and off in a dark room.

Up at dawn has never been a way we could describe ourselves, but the one-wire control method seen here could easily be provided by a microcontroller rather than the LDR. Oh, and for those that don’t get it; the [Lawrence Welk] show always started with a screen full of bubbles.

Continue reading “Alarm Clock Wakes You Like [Lawrence Welk]”

3D Gesture Tracking With LIDAR

[Reza] has been working on detecting hand gestures with LIDAR for about 10 years now, and we’ve got to say the end result is worth the wait.

The build uses three small LIDAR sensors to measure the distance to an object. These sensors work by sending out an infrared pulse and recording the time of flight for a beam of light to be emmitted and reflected back to a light sensor. Basically, it’s radar but with infrared light. Three of these LIDAR sensors are mounted on a stand and plugged into an Arduino Uno. By measuring how far away an object is to each sensor, [Reza] can determine the object’s position in 3D space relative to the sensor.

Unlike the Kinect-based gesture applications we’ve seen, [Reza]’s LIDAR can work outside in the sun. Because each LIDAR sensor is measuring the distance a million times a second, it’s also much more responsive than a Kinect as well. Not bad for 10 years worth of work.

You can check out [Reza]’s gesture control demo, as well as a few demos of his LIDAR hardware after the break.

Continue reading “3D Gesture Tracking With LIDAR”

Controlling A TV With A Microcontroller

Here’s two builds that print text to a TV with only two pins:

Still Alive with an Arduino

After seeing all the builds that play Still Alive, [Bob] decided to take a 1972 amber monitor and recreate the cut scene at the end of PortalThe build uses the TVout library for Arduino. There were a few problems with running the Unix and Still Alive animations at the same time, so [Bob] flips a bit in the EEPROM at the end of the command line animation and restarts into GLaDOS’ report. You can check out the old school color monitor here

ATMega Video Text Generator

[Stian] didn’t think his build was good enough for Hackaday, but his friend [Mikael] thought otherwise. [Stian] wrote a library to generate an NTSC video signal in real time. It’s a text-based build with 37×17 character resolution and only requires about 3kB of RAM. As a bonus, it only takes up two pins on [Stian]’s ATMega128.

You can check out the videos for both these builds after the break.

Continue reading “Controlling A TV With A Microcontroller”