Pine Made Phones, Laptops, And Now… Soldering Irons?

The TS100 smart soldering iron may have some new competition. Pine — the people best known for Linux-based phones and laptops — though the world needed another smart soldering iron so they announced the Pinecil — Sort of a knock off of the TS100. It looks like a TS100 and uses the same tips. But it does have some important differences.

It used to be a soldering iron was a pretty simple affair. Plug in one end; don’t touch the other end. But, eventually, things got more complicated and you wanted some way to make it hotter or cooler. Then you wanted the exact temperature with a PID controller. However, until recently, you didn’t care how much processing power your soldering iron had. The TS100 changed that. The smart and portable iron was a game-changer and people not only used it for soldering, but also wrote software to make it do other things. One difference is that the device has a RISC-V CPU. Reportedly, it also has better ergonomics and a USB C connector that allows for UART, I2C, SPI, and USB connections. It also has a very friendly price tag of $24.99.

Continue reading “Pine Made Phones, Laptops, And Now… Soldering Irons?”

BadPower Vulnerability In Fast Chargers Might Make Phones Halt And Catch Fire

A few days ago, Chinese researchers from technology giant Tencent released a paper outlining a firmware vulnerability in several types of fast charger power bricks (translated). The attack is known as BadPower, and it works by altering the default parameters in the firmware of fast chargers to deliver more power to devices than they can handle, which can cause them to overheat, melt, or catch fire.

The ancient and basic USB charging spec provides 0.5 A at 5 V, which is equal to 2.5 W. In theory, that’s all you’ll ever get from those types of chargers. But the newer generation of chargers are different. When you plug your phone into a fast charger, it negotiates a voltage and charging speed with your phone before passing it any power.

Fast chargers can push power at 20 V or more to speed up the charging process, depending on the charger and connected device. If the phone doesn’t do fast charging, it will default to the 5 V standard. Researchers claim the BadPower attack is capable of harming devices whether or not they include a fast charging feature. When a capable device is connected, the charger will still negotiate for 5V, but instead give 20V and wreak havoc.

In the demo after the break, one of the team uses a malicious device disguised as a phone to push the BadPower firmware change to a fast charger that’s hooked up to a voltmeter. Before the attack, the charger gives 5V. After the attack, it gives 5V for a few seconds before jumping up near 20V. Then they connect the now-dirty charger to two identical illuminated magnifying glasses. In one the chip lets the smoke monster out rather violently, and the chips of the other emit sparks.

The researchers tested 35 of the 200+ fast charging bricks currently on the market and found that 18 of them were vulnerable to BadPower, including 11 that can be exploited through the charging port itself. They believe the issue is fixable with a firmware update.

What is not available is enough information to verify this research, or a list of brands/models that are vulnerable. Researchers say the findings were submitted to the China National Vulnerability Database (CNVD) on March 27th, so the absence of this information may be a product of manufacturers needing more time to patch the vulnerability.

What do you think? We say halfway decent chargers shouldn’t be open to firmware attacks from the devices they are charging. And any halfway decent phone should have built-in electrical protection, right?

Continue reading “BadPower Vulnerability In Fast Chargers Might Make Phones Halt And Catch Fire”

Bringing Back The Fidget Toy Craze With The Magic Microcontroller Cube

[Rickysisodia] had a few dead ATmega128 chips laying around that he didn’t want to just throw away, so he decided to turn them into his own light-up fidget toy. The toy is in the form of a six-sided die so small that you can hang it on a keychain. He soldered an ATmega128 on each side of the cube and added a few dot circles to give his toy the look of a functional dice. We were pretty amazed by his impressive level of dexterity. Soldering those 0.8 mm-pitch leads together seems pretty tedious if you ask us.

Then he wired a simple, battery-powered tilt switch LED circuit on perfboard that he was able to sneakily place inside the cube. He used a mercury switch, which, as you may figure, uses a small amount of mercury to short two metal contacts inside the switch, completing the circuit and lighting the LED. We would suggest going with the non-mercury variety of tilt switches just to avoid any possible contamination. You know us, anything to mitigate unnecessary disasters is kind of a good route. But anyway, the die lights up a different color LED based on the orientation of the cube and it even blinks.

This is a pretty cool hack for wowing your friends at your next PCB art meet-up. We’ll probably put this in the electronics art category, so it doesn’t get lumped in with those other ever-beloved fidget toys.

Continue reading “Bringing Back The Fidget Toy Craze With The Magic Microcontroller Cube”

Apollo Missions Get Upgraded Video

July 20th marked the anniversary of the first human setting foot on the moon. If you were alive back then, you probably remember being glued to the TV watching the high-tech images of Armstrong taking that first step. But if you go back and watch the video today, it doesn’t look the way you remember it. We’ve been spoiled by high-density video with incredible frame rates. [Dutchsteammachine] has taken a great deal of old NASA footage and used their tools to update them to higher frame rates that look a lot better, as you can see below.

The original film from the moon landing ran between 12 frames per second and as low as 1 frame per second. The new video is interpolated to 24 frames per second. Some of the later Apollo mission film is jacked up to 60 frames per second. The results are great.

Continue reading “Apollo Missions Get Upgraded Video”

Die Lapping For Better CPU Performance

CPUs generate their heat in the silicon die that does all those wonderful calculations which make our computers work. But silicon conducts heat fairly poorly, so the thinner your CPU die, the better it will conduct heat out to the heatsink. This theoretically promises better cooling and thus more scope for performance. Thus, it follows that some overclockers have taken to lapping down their CPU dies to try and make a performance gain.

It’s not a simple process, as the team at [Linus Tech Tips] found out. First, the CPU must be decapped, which on the Intel chip in question requires heating to release the intermediate heat spreader. A special jig is also required to do the job accurately. Once the bare CPU is cleaned of all residual glue and heat compounds, it can then be delicately lapped with a second jig designed to avoid over-sanding the CPU.

After much delicate disassembly, lapping, and reassembly, the CPU appears to drop 3-4 degrees C in benchmarks. In overclocking terms, that’s not a whole lot. While the process is risky and complicated for little gain, the underlying premise has merit – Intel thinned things out in later chips to make minor gains themselves. Video after the break.

Continue reading “Die Lapping For Better CPU Performance”

Hand Depanelizer Gets Pneumatic Upgrade

In high volume production, smaller PCBs are often “panelized” so that multiple copies can be shuffled through assembly as a single piece. Each board is attached to the panel with a few strategically placed tabs, not unlike the sprues in a plastic model kit. If you only have to separate a few boards you can simply cut them with a hand nipper, but when you’re doing hundreds or thousands of boards, it quickly becomes impractical.

Which is where [Clough42] found himself recently. Looking to improve the situation without breaking the bank, he decided to automate his trusty hand-held depanelizer tool. The basic idea was to build an actuator that could stand in for his own hand when operating the tool. He already had a pneumatic cylinder that he could power the device with, he just needed to design it.

In the video below, he walks the viewer though his CAD design process for this project. His first step, which is one that’s often overlooked by new players, is creating digital representations of the hardware he’s using. This allows him to quickly design 3D printed parts that have the proper dimensions and clearances to interface with his real-world components. Remember: it’s a lot easier to adapt your 3D model to the components on hand than the other way around.

With the appropriate valves, hoses, and a foot pedal attached to the pneumatic cylinder, he’s able to operate the cutter completely hands-free. He still has to manually move the panel around, but at least it saves him from the repetitive squeezing motion.

With a tool like this and a custom testing jig, you’ll be producing PCBs like the pros in no time.

Continue reading “Hand Depanelizer Gets Pneumatic Upgrade”

Stay At Home, HOPE And DEF CON Will Come To You

We’ve often heard conferences like HOPE and DEF CON called Hacker Summer Camp (although there are certainly more camp-like camps that also fit the bill). As we get into the hot parts of the summer, heading indoors for security talks, workshops, and untold shenanigans sounds like a good idea… if it weren’t for an ongoing pandemic. The good news is that you can still get a strong dose of these cons over the next three weekends as they’re being offered virtually.

Hackers on Planet Earth (HOPE) is a biennial conference hosted in NYC. After much drama about the dank Hotel Pennsylvania hiking prices astronomically for the con, a new venue was found and we all breathed a sigh of relief. The best laid plans, etc. etc. — you know how this turns out. But beginning this Saturday, July 25th, over 100 speakers will present in HOPE’s first-ever live online presentation. Hackaday is a proud sponsor of HOPE 2020.

DEF CON happens every year, and every year we tell you that DEF CON has been cancelled. What do you do if it has actually been cancelled when the boy constantly cries wolf? Well it’s not cancelled, it’s morphed into what is called DEF CON Safe Mode — an online offering for all to enjoy. Go head, hook your computer up to the online version of DEF CON, what could go wrong? Find out when the virtual con goes live starting August 6th.

These are not the same as meeting up IRL. There are so many chance interactions and spectacles to see that you simply cannot spark with a virtual offering. However, the platform for presenters, the coming together to talk, learn, and share about privacy, security, and internet freedom are meaningful and worth our time. So support your favorite cons by joining in, even when it’s from the comfort of your own couch.