Coils In The Road Could Charge EVs While Driving

One of the primary issues with EVs is that you need to pull over and stop to get a charge. If there isn’t a high-speed DC charger available, this can mean waiting for hours while your battery tops up.

It’s been the major bugbear of electric vehicles since they started hitting the road in real numbers. However, a new wireless charging setup could allow you to juice up on the go.

Electric Highways

Over the years, many proposals have been made to power or charge electric vehicles as they drive down the road. Many are similar to the way we commonly charge phones these days, using inductive power transfer via magnetic coils. The theory is simple. Power is delivered to coils in the roadway, and then picked up via induction by a coil on the moving vehicle.

Taking these ideas from concept into reality is difficult, though. When it comes to charging an electric vehicle, huge power levels are required, in the range of tens to hundreds of kilowatts. And, while a phone can sit neatly on top of a charging pad, EVs typically require a fair bit of ground clearance for safely navigating the road. Plus, since cars move at quite a rapid pace, an inductive charging system that could handle this dynamic condition would require huge numbers of coils buried repeatedly into the road bed. Continue reading “Coils In The Road Could Charge EVs While Driving”

Did You See A John Deere Tractor Cracked At DEF CON?

The Internet, or at least our corner of it,  has been abuzz over the last few days with the news of a DEF CON talk by [Sick.Codes] in which he demonstrated the jailbreaking of the console computer from a John Deere tractor. Sadly we are left to wait the lengthy time until the talk is made public, and for now the most substantive information we have comes from a couple of Tweets. The first comes from [Sick.Codes] himself and shows a game of DOOM with a suitably agricultural theme, while the second is by [Kyle Wiens] and reveals the tractor underpinnings relying on outdated and un-patched operating systems.

You might ask why this is important and more than just another “Will it run DOOM” moment. The answer will probably be clear to long-term readers, and is that Deere have become the poster child for improper use of DRM to lock owners into their servicing and deny farmers the right to repair. Thus any breaches in their armor are of great interest, because they have the potential to free farmers world-wide from this unjust situation. As we’ve reported before the efforts to circumvent this have relied on cracked versions of the programming software, so this potential jailbreak of the tractor itself could represent a new avenue.

As far as we’re aware, this has so far taken place on the console modules in the lab and not in the field on a real tractor. So we’re unsure as to whether the door has been opened into the tractor’s brain, or merely into its interface. But the knowledge of which outdated software can be found on the devices will we hope lead further to what known vulnerabilities may be present, and in turn to greater insights into the machinery.

Were you in the audience at DEF CON for this talk? We’d be curious to know more. Meanwhile the Tweet is embedded below the break, for a little bit of agricultural DOOM action.

Continue reading “Did You See A John Deere Tractor Cracked At DEF CON?”

Motorized Camera Mount Was Once A 3D Printer

If you plan on building your own motorized camera mount, a 3D printer can definitely be of help. But in this case, [dslrdiy] didn’t use it for printing out parts — finding himself with little use for an old printer built from scrap back in the day, he decided to repurpose it and turn it into a remote controlled DSLR camera mount that’s capable of panning, tilting, and sliding.

The main goal was to not only salvage the stepper motors and controller board, in this case an Arduino Mega 2560 with RAMPS board, but also to keep the original firmware itself in use. For this to work, [dslrdiy] redesigned the mechanical parts that would allow him to perform the different camera movements using regular G-Code instructions operating the X, Y, and Z axes to pan, tilt, and slide respectively.

The G-Code instructions themselves are sent via UART by an accompanying control box housing an ESP32. This allows the camera mount to operated by either via joystick and buttons, or via serial Bluetooth connection, for example from a phone. The ESP32 system also allows to set predefined positions to move to, along with speed and other motor tweaks. You can see it all demonstrated in the video after the break.

While there’s simpler solutions for camera mounts out there, this is certainly an interesting approach. It also shows just how far desktop 3D printers have come if we already find the older generations repurposed like this. For more of [dslrdiy]’s work with 3D printers and cameras, check out his customizable lens caps.

Continue reading “Motorized Camera Mount Was Once A 3D Printer”