Neodriver Ornament Brightens Up Christmas

Stores will sell you all kinds of gaudy holiday ornaments, but there’s nothing like the style and class achieved by building your own. [w3arycod3r] did just that, whipping up the fun and festive Neodriver Ornament.

It’s a battery-powered build, and runs off an rechargeable 18650 cell which provides several days of operation at a low duty cycle. An ATtiny85 is charged with sending out commands to various NeoPixel devices, from rings to rectangular arrays. [w3arycod3r] then designed various PCBs that could carry the hardware and battery in a well-balanced package that would hang nicely when suspended from a ribbon on a Christmas tree.

As is always the fun part with addressable LEDs, [w3arycod3r] whipped up some fun animations to suit. The 5×5 rectangular arrays of NeoPixels are able to deliver scrolling text, while another animation blips out the RNA sequence of everyone’s least favorite coronavirus, SARS-CoV-2. Getting everything to fit into a ATtiny85’s 8 KB of code space and 512 byte EEPROM was a challenge, but slimming down the Adafruit NeoPixel library and using direct AVR register manipulation in place of regular Arduino functions helped.

Overall, it’s a fun holiday build that looks great on the tree. Alternatively, consider making yourself some rheoscopic ornaments this holiday season. And, if you’ve whipped up your own fun holiday build, throw it on the tipsline!

ERRF 22: Recreator 3D Turns Trash Into Filament

In Back to the Future, Doc Brown returns to 1985 with a version of his DeLorean time machine that has been modified with technology from the future. After telling Marty they need to go on yet another adventure, Doc recharges the DeLorean’s flux capacitor and time circuits by tossing pieces of garbage into the slick Mr. Fusion unit mounted to the rear of the vehicle. The joke being that, in the future, you could simply head over to the local big box store and pick up a kitchen appliance that’s capable of converting waste matter into energy.

Unfortunately, we’re nowhere near powering our homes with banana peels and beer cans. But if the Recreator 3D is any indication, the technology required to turn plastic bottles rescued from the trash into viable PET filament for your 3D printer is all but upon us. While there are still some aspects of the process that could stand to be streamlined, such as fusing multiple runs of filament together into one continuous roll, the core concepts all seem to be in place.

The MK5Kit Mini is currently in development with LDO Motors.

Creator [Josh Taylor] made the trip out to the 2022 East Coast RepRap Festival to not only show off the Recreator 3D, a project he’s been working on now for over a year, but to get people excited about the idea of turning waste plastic into filament. It’s not necessarily a new concept, and in fact [Josh] says earlier efforts such as the PETBOT are what inspired him to create his own open source take on the “pultrusion” concept.

According to [Josh], actually printing with the recycled filament isn’t that different from using commercial PETG, though it’s recommended you lower your speeds. A nozzle temperature of around 260 °C seems to work best, with the bed at 70 °C. Interestingly, the filament produced by the process is actually hollow inside, so the most critical change to make is increasing your extrusion rate to about 130% of normal to compensate for the internal void.

The current revision of the Recreator 3D, known as the MK5Kit, can be assembled using several core components salvaged from a low-cost Ender 3 printer in addition to a number of parts that the user will need to print themselves. For those who’d rather not source the parts, [Josh] says he hopes to get formal kits put together sometime next year, thanks to a partnership with LDO Motors.

But ultimately, [Josh] says the most important thing to him is that the plastic is recycled instead of getting sent to a landfill or incinerator. So whether you build a Recreator 3D or come up with your own design, all are welcome to the PET Pultruders United Facebook group he’s created to discuss the finer points of turning plastic trash into treasure.

Continue reading “ERRF 22: Recreator 3D Turns Trash Into Filament”

Hackaday Prize 2022: Recycled Plastic Skateboard Decks Demonstrate Small-Scale Injection Molding

Injection molding is usually focused on high-volume production, but that doesn’t always need to be the case. The Recycled Plastic Skateboard Deck project centers on the use of injection molding for a relatively low-volume production line using open-source tooling.

RPSD is part of the Precious Plastics ecosystem and uses the existing and open-source shredder and extruder to turn locally-sourced plastic waste into melted plastic. The core of the tooling is in the aluminum CNC-machined top, bottom, and edge mold sections bolted to a thick steel support structure that give the skateboard deck its shape. The edge section defines the deck’s perimeter, and 64 cartridge heaters are inserted into it to bring the mold up to temperature. The mold is mounted on a scissor lift mechanism to allow it to be aligned with the extruder, and temperature control electronics are housed in a laser-cut metal enclosure, which is bolted to the base of the mold structure.

To be clear, this is not a cheap way to make a couple of skateboard decks, but rather a way for small shops to do injection molded decks in-house. At ~$7500 for the components of this relatively large mold, excluding the extruder, you’d still have to sell quite a few decks to make it economically viable.

Although small-scale injection molding has become a lot more accessible, the cost of machined metal molds will remain high for the foreseeable future. However, if you only need small, flexible parts, you could probably do it for under $50 using 3D printed molds and silicone.

Continue reading “Hackaday Prize 2022: Recycled Plastic Skateboard Decks Demonstrate Small-Scale Injection Molding”

New Venue Gives Philly Maker Faire A Fresh Start

When we last checked in with the Philadelphia Maker Faire in 2019, one couldn’t help but be impressed with what the organizers had pulled off with just a fraction of the budget and resources it took to put on the defunct World Maker Faire in New York. We came away absolutely certain the event was on the verge of explosive growth, and that next year would be even bigger and better.

But of course, that didn’t happen. The COVID-19 pandemic meant that by the time the 2020 Faire should have kicked off, the logistics of holding a gathering much larger than a family dinner had become a serious hurdle. Philadelphia implemented strict rules on indoor and outdoor events to try and contain the spread of the virus, to the point that even when they were relaxed in 2021, it still didn’t make sense to try and put on a Faire under those conditions.

Thankfully things are largely back to normal-ish now, and as such the Philadelphia Maker Faire had something of a rebirth this year. Organizers decided to move the event to the Independence Seaport Museum, with vendor and exhibitor tables distributed throughout the museum’s three floors. This made the ticket price a great two-for-one value, especially if you had enough time left over to head out to the docks so you could explore the 130-year-old cruiser USS Olympia, and the USS Becuna, one of the last surviving WWII Balao-class submarines.

As you’d expect, the event was packed with fascinating projects and demonstrations, to the point that trying to list them all here would be impossible. But for those who couldn’t make the trip out to see what the 2022 Philadelphia Maker Faire had to offer, let’s take a look at a handful of the standout exhibits.

Continue reading “New Venue Gives Philly Maker Faire A Fresh Start”

Hackaday Podcast 190: Fun With Resin Printing, Tiny Tanks, Lo-Fi Orchestra, And Deep Thoughts With Al Williams

This week, Editor-in-Chief Elliot Williams and Assignments Editor Kristina Panos rendezvoused in yet another secret, throwaway location to rap about the hottest hacks from the previous week. We start off by gushing about the winners of the Cyberdeck Contest, and go wild over the Wildcard round winners from the Hackaday Prize.

It’s the What’s That Sound? results show, and Kristina was ultimately stumped by the sound of the Kansas City Standard, though she should have at least ventured a guess after shooting down both modem and fax machine noises.

Then it’s on to the hacks, which feature an analog tank-driving simulator from the 1970s, much ado about resin printing, and one cool thing you can do with the serial output from your digital calipers, (assuming you’re not a purist). And of course, stay tuned for the Can’t-Miss Article discussion, because we both picked one of resident philosopher Al Williams’ pieces.

Direct download.

Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!

Continue reading “Hackaday Podcast 190: Fun With Resin Printing, Tiny Tanks, Lo-Fi Orchestra, And Deep Thoughts With Al Williams”

This Snappy 8-Bit Microcomputer Brings The Speed To Retrocomputing

When the need for speed overcomes you, thoughts generally don’t turn to 8-bit computers. Sure, an 8-bit machine is fun for retro gameplay and reliving the glory days, and there certainly were some old machines that were notably faster than the others. But raw computing power isn’t really the point of retrocomputing.

Or is it? [Bernardo Kastrup] over at The Byte Attic has introduced an interesting machine called the Agon Light, an 8-bit SBC that’s also a bit like a microcontroller. The machine has a single PCB that looks about half as big as an Arduino Uno, and sports some of the same connectors and terminals around its periphery. The heart of the Agon Light is an eZ80 8-bit, 18.432 MHz 3-stage pipelined CPU, which is binary compatible with the Z80. It also has an audio-video coprocessor, in the form of an ESP32-Pico-D4, which supports a 640×480 64-color display and two mono audio channels. There’s no word we could find of whether the ESP32’s RF systems are accessible; it would be nice, but perhaps unnecessary since there are both USB ports and a PS/2 keyboard jack. There’s also a pin header for 20 GPIOs as well as I2C, SPI, and UART for serial communication.

The lengthy video below goes into all the details on the Agon Light, including the results of benchmark testing, all of which soundly thrash the usual 8-bit suspects. The project is open source and all the design files are available, or you can get a PCB populated with all the SMD components and just put the through-hole parts on. [Bernardo] is also encouraging people to build and sell their own Agon Lights, which seems pretty cool too. It honestly looks like a lot of fun, and we’re looking forward to seeing what people do with this.

Continue reading “This Snappy 8-Bit Microcomputer Brings The Speed To Retrocomputing”

This Week In Security: Linux WiFi, Fortinet, Text4Shell, And Predictable GUIDs

Up first this week is a quintet of vulnerabilities in the Linux kernel’s wireless code. It started with [Soenke Huster] from TU Darmstadt, who found a buffer overwrite in mac80211 code. The private disclosure to SUSE kernel engineers led to a security once-over of this wireless framework in the kernel, and some other nasty bugs were found. A couple result in Denial-of-Service (DOS), but CVE-2022-41674, CVE-2022-42719, and CVE-2022-42720 are Remote Code Execution vulnerabilities. The unfortunate bit is that these vulnerabilities are triggered on processing beacon frames — the wireless packets that announce the presence of a wireless network. A machine doesn’t have to be connected or trying to connect to a network, but simply scanning for networks can lead to compromise.

The flaws were announced on the 13th, and were officially fixed in the mainline kernel on the 15th. Many distros shipped updates on the 14th, so the turnaround was quite quick on this one. The flaws were all memory-management problems, which has prompted a few calls for the newly-merged Rust framework to get some real-world use sooner rather than later.

Fortinet

Much of Fortinet’s lineup, most notable their Fortigate firewalls, has a pre-auth authentication bypass on the administrative HTTP/S interface. Or plainly, if you can get to the login page, you can break in without a password. That’s bad, but at this point, you *really* shouldn’t have any administrative interfaces world-accessible on any hardware. Updated firmware is available.

More than just a couple days have passed, so we have some idea of the root problem and how it was fixed. It’s a simple one — the Forwarded HTTP headers on an incoming request are unintentionally trusted. So just send a request with Forwarded:for and Forwarded:by set to 127.0.0.1, and it falls through into code logic intended for internal API calls. Add a trusted SSH key, and pop, you’re in. Whoops. Continue reading “This Week In Security: Linux WiFi, Fortinet, Text4Shell, And Predictable GUIDs”