Let’s Buy Commodore! Well, Somebody Is.

When a man wearing an Atari T-shirt tells you he’s buying Commodore it sounds like the plot for an improbable 1980s movie in which Nolan Bushnell and Jack Tramiel do battle before a neon synthwave sunset to a pulsating chiptune soundtrack. But here on the screen there’s that guy doing just that, It’s [Retro Recipes], and in the video below he’s assembling a licensing deal for the Commodore brand portfolio from the distant descendant of the Commodore of old.

It’s a fascinating story and we commend him for tracing a path through the mess that unfolded for Commodore in the 1990s. We tried the same research path with a friend a few years ago and ended up with an anonymous Dutch paper company that wouldn’t answer our calls, so we’re impressed. In conjunction with several other players in the Commodore retrocomputing world he’s trying to assemble a favourable percentage deal for manufacturers of new parts, computers, and other goodies, and we’re pleased to see that it’s for the smaller player as much as for the industry giant.

When looking at a story like this though, it’s important not to let your view become clouded by those rose tinted glasses. While it’s great that we’re likely to see a bunch of new Commodore-branded Commodore 64s and parts, there are many pitfalls in taking it beyond that. We’ve seen the Commodore logo on too many regrettable licensed products in the past, and we fear it might be too tempting for it to end up on yet another disappointing all-in-one video game or just another budget PC. If something new comes out under the Commodore brand we’d like it to be really special, exploiting new ground in the way the Amiga did back in the day. We can hope, because the alternative has dragged other famous brands through the mud in recent years.

If you want an insight into the roots of the original Commodore’s demise, have a read of our Hackaday colleague [Bil Herd]’s autobiography.

Continue reading “Let’s Buy Commodore! Well, Somebody Is.”

ChatGPT Patched A BIOS Binary, And It Worked

[devicemodder] wrote in to let us know they managed to install Linux Mint on their FRP-locked Panasonic Toughpad FZ-A2.

Android devices such as the FZ-A2 can be locked with Factory Reset Protection (FRP). The FRP limits what you can do with a device, tying it to a user account. On the surface that’s a good thing for consumers as it disincentivizes stealing. Unfortunately, when combined with SecureBoot, it also means you can’t just install whatever software you want on your hardware. [devicemodder] managed to get Linux Mint running on their FZ-A2, which is a notable achievement by itself, but even more remarkable is how it was done.

So how did [devicemodder] get around this limitation? The first step was to dump the BIOS using a CH341A-based programmer. From there, the image was uploaded to ChatGPT along with a request to disable SecureBoot. The resulting file was flashed back onto the FZ-A2, and all available fingers were crossed.

And… it worked! ChatGPT modified the BIOS enough that the Linux Mint installer could be booted from a flash drive. There are a bunch of bugs and issues to work through but in principle we have just seen AI capable enough to successfully patch a binary dump of BIOS code, which, for the record, is kind of hard to do. We’re not sure what all of this might portend.

So is uploading binaries to ChatGPT with requests for mods vibe coding? Or should we invent a new term for this type of hack?

Microsoft Looking To Enforce USB-C Features Through WHCP

As much as people love USB-C, there’s one massive flaw that becomes very obvious the moment you look at the ports on any computer. This being that there’s no (standardized) way to tell what any of those ports do. Some may do display out (Alt-Mode), some may allow for charging, but it remains mostly a matter of praying to the hardware gods. According to a recent blog post, this is where Microsoft will seek to enforce a USB-C feature set on all (mobile) computers compliant with its Windows Hardware Compatibility Program (WHCP).

This also comes after years of the USB Implementers Forum, re-branding the USB specifications, with the most recent iteration thankfully using the bandwidth (in Gbps) as specifier (meaning no ‘USB PlaidSpeed’, sadly). Claiming to follow this end-user friendly spirit, the Microsoft blog post goes on to a minimum set of features that USB-C ports should have, as detailed in the above table.

Most notable is probably that PC charging support is required, as is support for at least one external display. As for the negatives, this seems to only apply to laptops, and no actual charging requirements are set (USB-PD voltages, wattage, etc.), so what the actual impact of this will be remains to be seen.

One thing remains certain, however, and that is that by trying to make USB-C the One True Connector for literally everything, there will always remain cases where end-user expectations remain unfulfilled.

When Wireless MIDI Has Latency, A Hardwired Solution Saves The Day

[Moby Pixel] wanted to build a fun MIDI controller. In the end, he didn’t build it just once, but twice—with the aim of finding out which microcontroller was most fit for this musical purpose. Pitted against each other? The ESP32 and Raspberry Pi Pico.

The MIDI controller itself is quite fetching. It’s built with a 4 x 4 array of arcade buttons to act as triggers for MIDI notes or events. They’re assembled in a nice wooden case with a lovely graphic wrap on it. The buttons themselves are wired to a microcontroller, which is then responsible for sending MIDI data to other devices.

At this point, the project diverges. Originally, [Moby Pixel] set the device up to work with an ESP32 using wireless MIDI over Bluetooth. However, he soon found a problem. Musical performance is all about timing, and the ESP32 setup was struggling with intermittent latency spikes that would ruin the performance. Enter the Raspberry Pi Pico using MIDI over USB. The hardwired solution eliminated the latency problems and made the controller far more satisfying to use.

There may be solutions to the latency issue with the wireless ESP32 setup, be they in code, hardware configuration, or otherwise. But if you want to play with the most accuracy and the minimum fuss, you’ll probably prefer the hardwired setup.

Latency is a vibe killer in music as we’ve explored previously.

Continue reading “When Wireless MIDI Has Latency, A Hardwired Solution Saves The Day”

Printed Focus Control For Pro Style Cinematography

When you watch a movie and see those perfect focus switches or zooms, the chances are you’re not seeing the result of the cameraman or focus operator manually moving the lens controls. Instead, they will have been planned and programmed in advance and executed by a motor. If you take a close look at many lenses you’ll see a ring that’s more than just extra knurling, it’s a gear wheel for this purpose. Want to experiment with this technique without buying professional grade accessories? [l0u0k0e] has you covered with a 3D printable focus zoom motor accessory.

The motor behind it all is a geared stepper motor, and there are a set of printed parts to complete the model. It’s recommended to use PETG, and nylon for the gears, but it would work in PLA with a shorter life. It’s designed to work with the standard 15 mm tube you’ll find on many camera rigs, and while you can write your own Arduino sketches to control it if you wish, we’re given instructions for hooking it up to existing focus drivers. The model is on Printables, should you wish to try.

This is by no means the first focus puller we’ve seen, in fact you can even use LEGO.

3D Pen Used To Build Cleaning Robot That Picks Up Socks

Your average 3D printer is just a nozzle shooting out hot  plastic while being moved around by a precise robotic mechanism. There’s nothing stopping you replacing the robot and moving around the plastic-squirting nozzle yourself. That’s precisely what [3D Sanago] did to produce this cute little robot.

The beginning of the video sets the tone. “First we create the base that will become the robot vacuum’s body,” explains [3D Sanago]. “I quickly and precisely make a 15 x 15 cm square almost as if I were a 3D printer.” It’s tedious and tiring to move the 3D printing pen through the motions to build simple parts, but that’s the whole gimmick here. What’s wild is how good the results are. With the right post-processing techniques using an iron, [3D Sanago] is able to produce quite attractive plastic parts that almost justify the huge time investment.

The robot itself works in a fairly straightforward fashion. It’s got four gear motors driving four omniwheels, which let it pan around in all directions with ease. They’re under command of an Arduino Uno paired with a multi-channel motor driver board. The robot also has a servo-controlled arm for moving small objects. The robot lacks autonomy. Instead, [3D Sanago] gave it a wireless module so it could be commanded with a PS4 controller. Despite being referred to as a “robot vacuum,” it’s more of a general “cleaning robot” since it only has an arm to move objects, with no actual vacuum hardware. It’s prime use? Picking up socks.

We’ve seen [3D Sanago]’s fine work before, too. Video after the break.

Continue reading “3D Pen Used To Build Cleaning Robot That Picks Up Socks”

The Bellmac-32 CPU — What?

If you have never heard of the Bellmac-32, you aren’t alone. But it is a good bet that most, if not all, of the CPUs in your devices today use technology pioneered by this early 32-bit CPU. The chip was honored with the IEEE Milestone award, and [Willie Jones] explains why in a recent post in Spectrum.

The chip dates from the late 1970s. AT&T’s Bell Labs had a virtual monopoly on phones in the United States, but that was changing, and the government was pressing for divestiture. However, regulators finally allowed Bell to enter the computing market. There was only one problem: everyone else had a huge head start.

There was only one thing to do. There was no point in trying to catch the leaders. Bell decided to leap ahead of the pack. In a time when 8-bit processors were the norm and there were nascent 16-bit processors, they produced a 32-bit processor that ran at a — for the time — snappy 2 MHz.

Continue reading “The Bellmac-32 CPU — What?”