Did you know that pornography is completely illegal in China? Probably not surprising news, though, right? The country has already put measures in place to scour the Internet in search of explicit content, mostly using AI. But the government also employs human porn appraisers, called jian huang shi, whose job it is to judge images and videos to decide whether they contain explicit content. Also probably not surprising is that humans are better than AI at knowing porn when they see it — or at least, they are faster at identifying it. Weirdness and morality and everything else aside, these jian huang shi are regular people, and frankly, they get exhausted looking at this stuff all day.
So what is the answer to burnout in this particular field? Researchers at Beijing Jiaotong University have come up with a way to bring the technological and human aspects of their existing efforts together. They’ve created a helmet that can detect particular spikes in brainwaves that occur from exposure to explicit imagery. Basically, it flashes a combination of naughty and ho-hum images in rapid succession until a spike is detected, then it flags the offending image.
Call us childlike, but we sure do get a kick out of both larger-than-life and miniature things, especially when they work as their “normal-sized” counterparts do. So you can imagine our glee when we saw [JGJMatt]’s 50mm LED lamp, which looks like a giant version of something you might have wired up on your bench at any given moment — a bent-legged LED, wired up and ready to blink.
[JGJMatt] started by designing a mold in Fusion360 to make the lens, which he then printed in PLA. However, due to the heat generated by curing resin (especially all enclosed like that), he recommends using PETG or ABS instead to avoid any potential warping issues.
This is where things get a bit dangerous. For the internals, [JGJMatt] went all out, hand forming a reflector cup out of brass pipe, and the anode and cathode plates from flat 1 mm brass stock, plated to a silvery gray finish. The light source itself is a 1 W cool white LED that sits in the reflector cup, safe under a layer of epoxy mixed with a bit of yellow paint that represent the phosphor layer in a standard 5 mm white LED.
Once the innards were ready, it was time to cast the huge lens with them tucked safely inside. After the resin cured, [JGJMatt] sanded away the layer lines and airbrushed it with clear lacquer to clear up the lens and protect it from yellowing down the road. Then it was just a matter of bending the legs to form a stand, and wiring it up. What an awesome way to light up your workbench! Or anywhere, really.
A few years ago, [Charles] picked up a sweet Suzuki motorcycle that checked all the boxen: it was in good shape, bore a few useful upgrades and a box of spare parts, plus the price was right. Though he assumed that he had pored over every picture on the classified site before buying, it wasn’t until later that [Charles] realized that something was indeed missing from the bike — a piece of chrome that does little more than to cover the tee in the brake line and bear the Suzuki brand. Once he saw the problem, he couldn’t un-see it, you know? And at that point, he just had to have that little piece, even if he had to make it himself.
That wasn’t the original plan, of course, but bike parts are expensive to begin with and only get worse as size, condition, and rarity increase. [Charles]’ quest to find this piece was halfway successful; he found a reasonable-but-rusty facsimile of the right part, although the emblem portion was long gone. Then he remembered the wife’s vinyl cutter.
Now, let’s stop right there. If you know anything at all about these vinyl cutters, you know that they are basically glorified 2D plotters with a knife attached where a pen would be. Send it any 2D file and you’re good? No, no; of course not. These things are locked down by the manufacturers.
Fortunately, [Charles] found inkscape-silhouette, which makes light work of sending SVGs to the machine. After much back and forth and maybe a bit of coin-flipping, [Charles] settled on the classy, stylized ‘S’ version rather than the full-on Suzuki badge. We think it looks great, and we’ll never tell anyone.
While this isn’t quite the type of badge we’d normally talk about, it’s a great project nonetheless, and it’s always nice to hear about projects that open up otherwise closed-source hardware.
Join Editor-in-Chief Elliot Williams and Assignments Editor Kristina Panos as we cuss and discuss all the gnarliest hacks from the past week. We kick off this episode with a gentle reminder that the Odd Inputs and Peculiar Peripherals Contest ends this Monday, July 4th, at 8:30 AM PDT. We’ve seen a ton of cool entries so far, including a new version of [Peter Lyons]’ Squeezebox keyboard that we’re itching to write up for the blog.
Elliot managed to stump Kristina with this week’s What’s That Sound, though she probably should have made a semi-educated guess. From there, it’s on to missing moon rocks and the word of the day before we get into a handful of contest entries, including a mechanical keyboard to end all mechanical keyboards.
This really just scratches the surface of this week’s show, which includes some new hardware stuffed into old, as well as modern implementations of old technology. And in case you didn’t get enough of Kristina’s childhood memoirs, she goes a bit deeper into the teddy bears and telephones rooms of her memory palace.
Direct download, record it to tape, and play it on your boombox.
Check out the links below if you want to follow along, and as always, tell us what you think about this episode in the comments!
How do the potatoes in that sack keep from sprouting on their long trip from the field to the produce section? Why don’t the apples spoil? To an extent, the answer lies in varying amounts of irradiation. Though it sounds awful, irradiation reduces microbial contamination, which improves shelf life. Most people can choose to take it or leave it, but in some countries, they aren’t overly concerned about the irradiation dosages found in, say, animal feed. So where does that leave non-vegetarians?
If that line of thinking makes you want to Hulk out, you’re not alone. [kutluhan_aktar] decided to build an IoT food irradiation detector in an effort to help small businesses make educated choices about the feed they give to their animals. The device predicts irradiation dosage level using a combination of the food’s weight, color, and emitted ionizing radiation after being exposed to sunlight for an appreciable amount of time. Using this information, [kutluhan_aktar] trained a neural network running on a Beetle ESP32-C3 to detect the dosage and display relevant info on a transparent OLED screen. Primarily, the device predicts whether the dosage falls into the Regulated, Unsafe, or just plain Hazardous category.
[kutluhan_aktar] lets this baby loose on some uncooked pasta in the short demo video after the break. The macaroni is spread across a load cell to detect the weight, while [kutluhan_aktar] uses a handheld sensor to determine the color.
At the risk of dating myself, I will tell you that grew up in the 80s — that decade of excess that was half drab and half brightly colored, depending on where you looked, and how much money you had for stuff like Memphis design. Technology seemed to move quickly in almost every aspect of life as the people of the Me decade demanded convenience, variety, and style in everything from their toilet paper (remember the colors?) to their telephones. Even though long distance cost a fortune back then, we were encouraged to ‘reach out and touch someone’.
A Healthy Fear of Bears
Looking back, it’s easy to see how all that advanced technology and excess filtered down to children. I may be biased, but the 80s were a pretty awesome time for toys, and for children’s entertainment in general. Not only were the toys mostly still well-made, even those that came in quarter machines — many of them were technologically amazing.
Take Teddy Ruxpin, which debuted in 1985. Teddy was the world’s first animatronic children’s toy, a bear that would read stories aloud from special cassette tapes, which moved his eyes and mouth along with the words. One track contained the audio, and the other controlled three servos in his face.
I remember watching the commercials and imagining Teddy suddenly switching from some boring bedtime story over to a rockin’ musical number a là the animatronic Rock-afire Explosion band at ShowBiz Pizza (a Chuck E. Cheese competitor). That’s the kind of night I wanted to be having.
The current lineup of the Rock-afire Explosion. Image via Servo Magazine
Which brings us to KC Bearifone, an animatronic teddy bear telephone. Honestly, part of the reason I bought the Bearifone was some sort of false nostalgia for Teddy. The main reason is that I wanted to own a Teleconcepts unit of some kind, and this one seemed like the most fun to mess around with. A robot teddy bear that only does speakerphone? Yes, please.
How can the big box store mix the perfect shade of English Wedgwood right before your eyes? The answer is in highly-concentrated pigments that come in many different sizes up to a whopping five gallons. Now, just imagine the amount of watercolor, acrylic, or other types of paint that could be made by simply scraping the walls of an empty 5-gallon tub, which you know is just getting thrown away with all that usable pigment inside.
The process will likely take the form of an open-source three-roller milling machine, which are commonly used in paint manufacture. Basically you have three rollers that process the pigment and binder, and the mixture is run through as many times as necessary. Although they are fairly simple machines in design, building them to work well requires adherence to precise technical specs.
We can’t wait to see what [technoplastique] comes up with to use for the stainless steel rollers. The rest of the plan involves a Raspberry Pi Pico, one DC motor per roller, a motor shield, and a power supply, but the rollers are pretty crucial. If you have any ideas other than steel rolling pins (the kitchen kind) or pipe couplings (which are too short, anyway), let us know in the comments!