Remoticon Is On!

If you’re reading this post while the bits are still fresh, you’ve got about four hours until day two of Hackaday Remoticon 2021. You can feel the electricity in the air, right? We’ve got an absolutely stellar line-up this year: every talk is gonna be a good talk.

Friday was great fun, and you can still still rewind Friday’s live stream if you hurry. Otherwise, at 11:00 AM PST, we’ll start up day two with a keynote talk by Keith Thorne, who’s going to take us through all of the work, and hacks, that made the LIGO experiment the most sensitive instrument mankind has ever made. Bookending the talks, just before the Hackaday Prize announcement and after-party DJ Jackalope Live Set, Jeremy Fielding is going to be walking through everything about his robotic arm and what you need to know about anything that moves.

Watch some great talks, and then hang out with the presenters afterwards over on our Discord server. What more do you want on a Saturday?

We really don’t want you to miss out on anything, but in case you come late to the talks, you can rewind the live stream to catch up. After it’s all done, we’ll slice and dice up the talks so you can find them later. But if you miss out on the discussions, the chance to ask our speakers questions, and the pervasive Jolly Wrencher ambiance, you’ve just missed out. Join us live if you possibly can! We’d love to see you.

Peek Behind The Curtains: Conference Badge Design

In the before-times, back when we could have in-person Hackaday Supercons, there was always the problem of the badge. Making a few hundred small electronic thingies, for a smart but broad range of hackers, is tricky. We always want it to do something all on its own, but also ideally to allow enough free range that the motivated badge hacker can make it into something exquisite. Add in the fact that some attendees are hardware types and some are software types, and toss in a price constraint too. Oh, and it has to look good. Tough problem.

Here’s one extreme solution: the badge at the first Supercon. Faced with essentially zero budget and a tight time constraint, the Hackaday team punted — and produced a prototype board, but had tons of parts on hand for everyone to draw from. And the Hackaday crowd delivered. This was the badge that demonstrates what happens if you leave everything open.

Contrast with the 2018 Belgrade and Supercon badges, which were essentially the same except for color. Here, the hardware interface was limited to a 9-pin header, but the badge itself was a fully functional microcomputer, complete with keyboard and screen. Most of the hacks were written in the native BASIC, though a few hearty souls played around with the alternative CP/M system. This was our most software badge.

Our last in-person badge, the 2019 Supercon badge, was free rein for both hardware and software hackers. The whole thing was based on an FPGA, with completely custom gateware written by Sprite_tm running RISC-V, but based loosely on the Z80 architecture. This was probably also the badge with the highest hurdle to hackers, but you all came through with inventive hardware add-ons, but also a team that came through with a custom Linux OS running on this never-before-seen virtual environment, enabled by a hardware SDRAM cartridge hack.

And finally, even before the global supply crisis, even a tight-knit conference like ours could stock-out the world’s supply of a given component. The untold story of the 2016 Belgrade badge is that Voja Antonic bought out the world’s supply of Kingbright 8×8 common-cathode LED matrixes, and had to redesign the board in the last minute to incorporate the common-anode parts too. (Or was it vice-versa?) Lesson learned, the 2016 Supercon badge traded out the LED modules for discrete LEDs. Not gonna stock out on red LEDs.

So that’s a long-winded introduction to Thomas Flummer’s unofficial Remoticon 2 badges. With the parts crisis and a virtual conference, you’re on your own to source the badge. Splitting the freedom vs. in-built functionality problem like Samson, he’s got two boards — one a breadboard and the other fully populated. And like all his badges, they both look great. If you manage to get one made by Remoticon next week, be sure to show it off in the Bring-a-Hack. And if you don’t get it in time, bring it by in person to the 2022 Supercon!

Separating Ideas From Words

We covered Malamud’s General Index this week, and Mike and I were talking about it on the podcast as well. It’s the boldest attempt we’ve seen so far to open up scientific knowledge for everyone, and not just the wealthiest companies and institutions. The trick is how to do that without running afoul of copyright law, because the results of research are locked inside their literary manifestations — the journal articles.

The Index itself is composed of one-to-five-word snippets of 107,233,728 scientific articles. So if you’re looking for everything the world knows about “tincture of iodine”, you can find all the papers that mention it, and then important keywords from the corpus and metadata like the ISBN of the article. It’s like the searchable card catalog of, well, everything. And it’s freely downloadable if you’ve got a couple terabytes of storage to spare. That alone is incredible.

What I think is most remarkable is this makes good on figuring out how to separate scientific ideas from their prison — the words in which they’re written — which are subject to copyright. Indeed, if you look into US copyright law, it’s very explicit about not wanting to harm the free sharing of ideas.

“In no case does copyright protection for an original work of authorship extend to any idea, procedure, process, system, method of operation, concept, principle, or discovery, regardless of the form in which it is described, explained, illustrated, or embodied in such work.”

But this has always been paradoxical. How do you restrict dissemination of the papers without restricting dissemination of the embodied ideas or results? In the olden days, you could tell others about the results, but that just doesn’t scale. Until today, only the richest companies and institutions had access to this bird’s eye view of scientific research — similar datasets gleaned from Google’s book-scanning program have trained their AIs and seeded their search machines, but they only give you a useless and limited peek.

Of course, if you want to read the entirety of particular papers under copyright, you still have to pay for them. And that’s partly the point, because the General Index is not meant to destroy copyrights, but give you access to the underlying knowledge despite the real world constraints on implementing copyright law, and we think that stands to be revolutionary.

The Pi Zero 2 W Is The Most Efficient Pi

Last week we saw the announcement of the new Raspberry Pi Zero 2 W, which is basically an improved quad-core version of the Pi Zero — more comparable in speed to the Pi 3B+, but in the smaller Zero form factor. One remarkable aspect of the board is the Raspberry-designed RP3A0 system-in-package, which includes the four CPUs and 512 MB of RAM all on the same chip. While 512 MB of memory is not extravagant by today’s standards, it’s workable. But this custom chip has a secret: it lets the board run on reasonably low power.

When you’re using a Pi Zero, odds are that you’re making a small project, and maybe even one that’s going to run on batteries. The old Pi Zero was great for these self-contained, probably headless, embedded projects: sipping the milliamps slowly. But the cost was significantly slower computation than its bigger brothers. That’s the gap that the Pi Zero 2 W is trying to fill. Can it pull this trick off? Can it run faster, without burning up the batteries? Raspberry Pi sent Hackaday a review unit that I’ve been running through the paces all weekend. We’ll see some benchmarks, measure the power consumption, and find out how the new board does.

The answer turns out to be a qualified “yes”. If you look at mixed CPU-and-memory tasks, the extra efficiency of the RP3A0 lets the Pi Zero 2 W run faster per watt than any of the other Raspberry boards we tested. Most of the time, it runs almost like a Raspberry Pi 3B+, but uses significantly less power.

Along the way, we found some interesting patterns in Raspberry Pi power usage. Indeed, the clickbait title for this article could be “We Soldered a Resistor Inline with Raspberry Pis, and You Won’t Believe What Happened Next”, only that wouldn’t really be clickbait. How many milliamps do you think a Raspberry Pi 4B draws, when it’s shut down? You’re not going to believe it.

Continue reading “The Pi Zero 2 W Is The Most Efficient Pi”

Dream Bigger, Predict The Future

I’d love to tell you that I’m never wrong, but I’ve been wrong a lot. Remember the Arduino? When it was brand new, I thought it was some silly collection of libraries and a drop-down menu for people who are too lazy to just type out their own #include statements. Needless to say, it launched about a million hacks and brought microcontroller programming into the mainstream. Oops.

Similarly, about fifteen years ago, I saw an educational project out of MIT’s Media Lab. It consisted of a bunch of blocks that had LCD screens on them and would interact with each other when put together. The real hook, though, was that each block had an accelerometer inside, so you could “pour water” out of one block into another, for instance.

At that time, accelerometers were expensive, even in quantities. Even one of these cubes must have cost $100 at the time, much less a whole set. Accelerometers were so expensive that I wouldn’t have thought about incorporating one into a project, much less a dozen, so I ignored them for hacker purposes. Then came the cellphone and economies of scale. Today, even in chip shortage times, they’re readily available for around $2 each, making them useful for exactly this kind of “frivolous” use.

From the Arduino experience, I learned to never underestimate the impact of what seem to me to be “small” conveniences. (And maybe more so, the value of the tremendous common effort from the community.) From the MIT accelerometer story, the moral is that some parts will get drastically cheaper in the future, so you shouldn’t necessarily exclude the cool new sensor from your design repertoire. After all, ten years ago, nobody would have thought that we’d have laser time-of-flight rangefinders for less than a hamburger.

What new components are fantastically useful, or full of potential, that might be cheap enough in the future to make them also worth looking into? Swing by Hackaday tomorrow morning and join in the conversation!

In Search Of The First Comment

Are you writing your code for humans or computers? I wasn’t there, but my guess is that at the dawn of computing, people thought that they were writing for the machines. After all, they were writing in machine language, and whatever bits they flipped into the electronic brain stayed in the electronic brain, unless punched out on paper tape. And the commands made the machine do things, not other people. Code was written strictly for computers.

Modern programming practice, on the other hand, is aimed firmly at people. Variable and function names are chosen to be long and to describe what they contain or do. “Readability” of code is a prized attribute. Indeed, sometimes the fact that it does the right thing at all almost seems to be an afterthought. (I kid!)

Somewhere along this path, there was an important evolutionary step, like the first fish using its flippers to walk on land. Comments were integrated into programming languages, formalizing the notes that coders of old surely wrote by hand in the margins of the paper first-drafts before keying it in. So I went looking for the missing link: the first computer language, and ideally the first program, with comments. I came up empty handed.

Or rather full handed. Every computer language that I could find had comments from the beginning. FORTRAN had comments, marked by a “C” as the first character in a line. APL had comments, marked by the bizarro rune ⍝. Even the custom language written for the Apollo 11 guidance computers had comments — the now-commonplace “#”. I couldn’t find an early programming language without comments.

My guess is that the first language with a comment must have been an assembly language, because I don’t know of any machines with a native comment instruction. (How cool and frivolous would that be?)

Assemblers simply translate mnemonic names to their machine instruction counterparts, but this gives them the important freedom to ignore anything starting with, traditionally, a semicolon. Even though you’re just transferring the contents of register X to the memory location pointed to in register Y, you can write that you’re “storing the height above ground (meters)” in the comments.

The crucial evolutionary step, though, is saving the comments along with the code. Simply ignoring everything that comes after the semicolon and throwing it away doesn’t count. Does anyone know? What was the first code to include comments as part of the code itself, and not simply as marginalia?

Where You Are Influences What You Invent

[Timon] just bought a new PCB holder setup for his desk. It’s one of those spring-loaded jobbies that uses strong magnets to hold it up off of a work surface, and is made of metal so that you can reflow solder with it. It might be a clone of the PCBite, but frankly I’ve seen similar projects everywhere — it’s hard to say who is copying whom these days. And anyway, that’s not the point.

What struck me about the holders was their tops: they’re repurposed 3D printer nozzles. That’s a fantastic idea because they’re non-magnetic, heat tolerant, relatively uniform, and probably dirt cheap in Shenzhen, where the designer of this board almost certainly lives. Maybe he or she even works in a 3D printer factory? Who knows? But the designer almost certainly looked around for something that would fit the bill, and found the nozzles.

Indeed, there’s been a lot of innovation in all things board-holding coming out of China over the last decade. I can remember when the state of the art was a vise-like affair. (I still like my homebrew Stickvise clone for low, square jobs.)

But with cell phone repairs requiring the ability to hold and reflow ever stranger board shapes, there’s been a flourishing of repositionable holders. The pawn-pillar designs are cool, but their utility rests firmly in how strong the magnets are. (I wouldn’t buy the one linked, for instance, without trying it first-hand.) I really like the look of these jobbies, which have springs to maintain tension. (Will the 3D-printed plastic jaws hold up to multiple reflows?) Anyway, it’s no coincidence that the inventors of these devices are in the cellphone-repair capital of the universe.

The old saying is that necessity is the mother of invention. But what if, like with real estate, it’s location, location, location? You dream up solutions to problems around you, using parts that you’ve got on-hand. If that sounds a little fatalistic, consider that you can also change your surroundings, either physical or even virtual. Are you in the middle of the right challenges and opportunities?