Developed On Hackaday: Mooltipass Arduino Shields Compatibility

Some of our dear readers may already have an infallible system to remember different complex passwords for the different websites they visit daily. This is why they may have not been following the offline password keeper that the Hackaday community is building.

The Mooltipass has a characteristic that may regain their interest: it is possible to connect Arduino shields to it. In the video embedded below you can see the Arduino conversion process our development team imagined a few months back. The operation simply consists in using a knife to remove plastic bits on top of standard Arduino headers. We also embedded a few use cases with their respective sketches that may be downloaded from our official GitHub repository.

As with stacking several shields, a little tweaking may be required to keep the functionalities from both the Mooltipass and the connected shield. We therefore strongly welcome Arduino enthusiasts to let us know what they think of our setup.

In the meantime, you may want to subscribe to our official Google Group to stay informed of the Mooltipass launch date.

Continue reading “Developed On Hackaday: Mooltipass Arduino Shields Compatibility”

A Detailed Look At The 7805 Voltage Regulator

We’re quite sure that all hobbyists have used the 7805 voltage regulator at least once in their lives. They are a simple way to regulate 7V+ voltages to the 5V that some of our low power projects need. [Ken Shirriff] wrote an amazingly detailed article about its theory of operation and implementation in the silicon world.

As you may see in the picture above such a regulator is composed of very different elements: transistors, resistors, capacitors and diodes, all of them integrated in the die. [Ken] provides the necessary clues for us to recognize them and then explains how the 7805 can have a stable output even when its temperature changes. This is done by using a bandgap reference in which the difference between transistor base-emitter voltages for high and low current is used to counter the effects of temperature. As some elements looked a bit odd during [Ken]’s reverse engineering process, he finally concluded that what he purchased on Ebay may be a counterfeit (read this Reddit comment for another opinion).

Developed On Hackaday: Chrome/Firefox Apps/Extensions Developers Needed

The Hackaday community is currently working on an offline password keeper, aka Mooltipass. The concept behind this product is to minimize the number of ways your passwords can be compromised, while generating and storing long and complex random passwords for the different websites you use daily. The Mooltipass is a standalone device connected through USB and is compatible with all major operating systems on PCs, Macs and Smartphones. More details on the encryption and technical details can be found on our github repository readme or by having a look at all the articles we previously published on Hackaday.

Our beta testers are now using their prototypes daily and their feedback allowed us to considerably improve the Mooltipass. The firmware development is coming to an end as most functionalities have been implemented in the last few weeks. The development team is therefore turning his attention to the Chrome/Firefox plugins and needs your help to finish them in a timely manner. As you can guess, our goal is to provide a slick and intuitive interface for all of the Mooltipass features. If you have (a lot of) spare time, knowledge of the browsers APIs, feel free to leave a comment below with a valid email address!

Bit-banging Ethernet On An ATTiny85

Ethernet bit banging

[Cnlohr] just published an ingenious but dangerous way to send Ethernet packets using an ATTiny85. The ATtiny directly drives one pair of differential TX wires of a standard Ethernet cable. Doing so will force the TX signal ground to be the same as the ATTiny’s and in some cases may put 48V on your AVR if your cable is plugged into a Power Over Ethernet switch… which may be a problem.

In the video embedded below [cnlhor] explains that the microcontroller is clocked at 20Mhz to bit-bang the Manchester encoded electrical signals. Using a neat trick his home switch will detect his platform as a 10MBit Ethernet switch which can then send hard-coded packets to his computer. As you can guess, each of this packets takes quite a bit of space inside the ATTiny’s flash memory: 2+Kbytes. All of the code used may be downloaded on the creator’s GitHub repository, though he constantly warned us that it shouldn’t be used for real life applications.

Edit: One of our readers also let us know of a similar awesome project called the IgorPlug-UDP. Make sure to check it out!

Continue reading “Bit-banging Ethernet On An ATTiny85”

ARM-BMW, The Open Hardware Cortex-M0 Development Board

[Vsergeev] tipped us about a neat Cortex-M0 based development board with a total BoM cost under $15. It’s called the ARM Bare Metal Widget (ARM-BMW), focuses on battery power, non-volatile storage and debuggability.

The chosen micro-controller is the 50MHz NXP LPC1114DH28 which provides the user with 32kB of Flash, 8kB of SRAM, a 6 channel ADC and I2C/SPI/UART interfaces among others. The ARM-BMW contains a 2Mbyte SPI flash, an I2C I/O expander, several headers for expansion/debug purposes, 4 LEDs, 2 buttons, 2 DIP switches and finally a JTAG/SWD header for flashing and debugging. As you can see in the picture above you may either populate your own HC49UP crystal or use the internal 12MHz RC oscillator.

The platform can be powered using either a USB cable or a LiPo battery. As you can guess it also includes a much-needed battery charger (the MCP73831T) and a switched capacitor DC/DC converter to supply 3.3V. You may find all the files on the hardware or software repositories.

Ask Hackaday: Can Paper USB Business Cards Exist?

swivel business card

The swivelCard Kickstarter campaign recently received a lot of press coverage and makes some impressive claims as their goal is the development of USB and NFC business cards at a $3 unit price. While most USB-enabled business cards we featured on Hackaday were made of standard FR4, this particular card is made of paper as the project description states the team patented

a system for turning regular paper into a USB drive.

As you can guess this piqued our interest, as all paper based technologies we had seen until now mostly consisted of either printed PCBs or paper batteries. ‘Printing a USB drive on regular paper’ (as the video says) would therefore involve printing functional USB and NFC controllers.

Luckily enough a quick Google search for the patents shown in one of the pictures (patent1, patent2) taught us that a storage circuitry is embedded under the printed USB pads, which may imply that the team had an Application-Specific Integrated Circuit (ASIC) designed or that they simply found one they could use for their own purposes. From the video we learn that ‘each card has a unique ID and can individually be programmed’ (the card, not the UID) and that it can be setup to open any webpage URL. The latter can even be modified after the card has been handed out, hinting that the final recipient would go to a ‘www.swivelcard.com/XXXX” type of address. We therefore got confused by

Imagine giving your business card with pictures, videos, presentations, and websites for the recipient to interact with!

paragraph that the project description contains.

This leads us to one key question we have: what kind of USB drive can make a given user visit a particular website, given that he may have Linux, Windows, Mac or any other OS? They all have similar USB enumeration processes and different key strokes to launch a browser… our wild guess is that it may be detected as storage with a single html file in it. Unfortunately for us the USB detection process is not included in the video.

Our final question: Is it possible to embed both USB and NFC controllers in a thin piece of paper without worrying about broken ICs (see picture above)? NFC enabled passports have obviously been around for a long time but we couldn’t find the same for USB drives.

Possible or not, we would definitely love having one in our hands!

Edit: One of our kind readers pointed out that this campaign actually is a re-launch of a failed indiegogo one which provides more details about the technology and confirms our assumptions.

Phone Gyroscope Signals Can Eavesdrop On Your Conversations

A gyroscope is a device made for measuring orientation and can typically be found in modern smartphones or tablet PCs to enable rich user experience. A team from Stanford managed to recognize simple words from only analyzing gyroscope signals (PDF warning). The complex inner workings of MEMS based gyroscopes (which use the Coriolis effect) and Android software limitations only allowed the team to only sniff frequencies under 200Hz. This may therefore explain the average 12% word recognition rate that was achieved with custom recognition algorithms. It may however still be enough to make you reconsider installing an app that don’t necessarily need access to the on-board sensors to work. Interestingly, the paper also states that STMicroelectronics currently have a 80% market share for smartphone / Tablet PCs gyroscopes.

On the same topic, you may be interested to check out a gyroscope-based smartphone keylogging attack we featured a couple of years ago.