Reon Pocket Keeps You Cool With A Peltier Element

With another summer of heatwaves leaving its mark on our planet, finding a way to stay cool during the day isn’t an easy task. From the morning and afternoon commute in public transport, to busy crowds outside during lunch hour, there are many times when you cannot just find a place inside an airconditioned room to deal with the heat. Exactly for this purpose Sony has successfully completed a kickstarter (in Japanese) on its corporate ‘First Flight’ crowdfunding platform for the Reon Pocket.

Many people probably aren’t aware of Sony’s crowdfunding platform, but it’s a way to gauge the interest from the public for more ‘out there’ products, which do not fit Sony’s usual business model. In this case the Reon Pocket is a Peltier-based device which is placed against the back of one’s neck, from where it can either lower or increase the body’s temperature, reportedly by -13 ℃ and +8.3 ℃ respectively.

Covered in more detail by Engadget and its Japanese sister site, the reported 24 hour battery life refers to the Bluetooth link that connects the device with one’s smartphone, whereas the battery lasts under two hours with the peltier element active. This is probably not too shocking to anyone who knows how a peltier element functions, and how much electricity they consume.

Still, the basic concept seems sound, and there are functioning prototypes. While a 2-hour battery life isn’t amazingly long, it can be just the thing one needs to keep one’s cool during that 15 minute walk to the office in a three-piece suit, without needing a shower afterwards. The device isn’t expensive either, with a projected ¥12,760 (about $117) supplied. Naturally the device will only be on sale in Japan.

Continue reading “Reon Pocket Keeps You Cool With A Peltier Element”

A Simple Way To Analyze Guitar Pickups

To the uninitiated an electric guitar seems fairly simple: you pluck a string and the electronics send the corresponding audio signal on the 6.3 mm jack output, all ready for for the amplifier to work its magic. Much of what makes a guitar like that sound good depends on the pickups, however. These are the devices which are placed between the guitar body and the strings. Depending on the guitar there can be one, two, or more of them, of varying types and configurations.

As a Gibson fan who upon getting introduced to a Fender Telecaster just had to replace its pickups with humbucking types, [Ken Willmott] found himself thrown into the wonderful world of pickup design and characterization. After two years of working through a number of designs and approaches, he eventually settled on a preamplifier design featuring a JFET opamp (LT1058) on a custom PCB which amplifies the pickup response from a test signal, acting as a front end signal conditioner.

Continue reading “A Simple Way To Analyze Guitar Pickups”

Add An Ant To Your Desk For Some Compact PCB Manufacturing

Usually when one thinks of using a CNC machine for producing PCBs, one thinks of those big, bulky CNC machines that pretty much fill an entire desk. But what if a CNC machine could be small enough to fit on a desk without getting in the way, yet still be useful enough to make single- and double-sided PCBs? This was the idea behind The Ant, the compact PCB manufacturing machine which [Mattia] and [Angelo] designed and open sourced.

In addition to the above linked Bitbucket repository for the project, the ‘Ant Team’ has a YouTube channel on which they have a range of rather professionally edited videos on the project, ranging from constructing the little machine, to various updates and more  Also see the video that is attached after the link for a visual introduction to the project.

Support and community interaction is mostly performed via the Reddit group for the project, where the diminutive machine finds a welcoming community as it continues to evolve. The machine itself is specified at this point as being able to built from commercially available and 3D printed parts, requiring no further tools for cutting or shaping. The precision is about 0.2 mm trace spacing.

Optical alignment for double-sided boards is achieved using a USB micro camera and the bCNC software, while the cost for materials is said to be quite inexpensive when compared with commercial solutions

Honestly, after seeing the machine in action, wouldn’t you want to have a CNC machine that’s so small and good-looking on your desk? If there’s one thing one might want to add, it’s probably a way to deal with the copper dust that’s produced while creating PCBs. Having to clean that off the desk after each PCB manufacturing session would get a bit cumbersome, we imagine.

Continue reading “Add An Ant To Your Desk For Some Compact PCB Manufacturing”

Installing Android On Your Nintendo Switch, Because Why Not?

In a continuing trend of ‘but does it run Android?’, enterprising folk over at the XDA-Developers forum have found a way to get LineageOS (the successor to CyanogenMod) installed and running on the Nintendo Switch using Switchroot source code. Promising to release the necessary files to replicate this effort has obviously made other people at XDA-Developers forum as well as on Reddit rather excited.

As for the question of ‘why?’, one has to remember that internally the Nintendo Switch is an Nvidia Tegra X1-based system with a Maxwell GPU, making it definitely one of the nicer ARM-based portable systems out there if one wants to do some Android-based gaming. Even better, the entire Nvidia Shield TV-derived ROM runs from the SD card, so just popping out this SD card is sufficient to return to playing Switch games.

Currently a few nagging issues still have to be worked out with this ROM, such as touchscreen issues, sleep mode not working, auto-rotation not working as communication with the sensor needs to be figured out, and so on. This should make it clear that it won’t be a production ready piece of software, but definitely something that should be used at your own risk.

While it shouldn’t harm the Switch, one should probably not try it on a Switch one cares deeply about. Just in case.

PC And Console Gaming United Courtesy Of Origin

When folk at Origin PCs realized that their company was about to celebrate its 10th anniversary of making custom (gaming) PCs, they knew that they had to do something special. Since one thing they did when the company launched in 2009 was to integrate an XBox 360 into a gaming PC, they figured that they might as well refresh and one-up that project. Thus 2019’s Project ‘Big O’ was born.

Naturally still featuring a high-end gaming PC at its core, the show piece of the system is that they also added an XBox One X, Playstation 4 Pro and Nintendo Switch console into the same full-tower GENESIS chassis. For this they had to strip the first two consoles out of their enclosures and insert them into the case each along with their own (appropriately colored) watercooling loop. Unfortunately the optical drives got ditched, presumably because this made things look cleaner.

The Switch was not modded or even cracked open. Instead a Switch dock was installed in the front of the case, allowing one to dock the Switch in the front of the case, and still use it in a mobile fashion after undocking it. Meanwhile an Ethernet and HDMI switch simplify the interfaces to this gaming system a lot, requiring one to only plug in a single HDMI and Ethernet cable to plug in all capable platforms. The result is a pretty sleek-looking system, definitely an eye-catcher.

Since Origin will never, ever, sell the Big O to customers as it’s just a promotional item, it does tickle the imagination. Case-modding and combining multiple computers (often an ATX and mini-ITX) system into a single case is nothing new, but aspects such as having a dockable Switch feature, this clean aesthetic and overall functionality makes one wonder what an enterprising hobbyist could accomplish here.

Continue reading “PC And Console Gaming United Courtesy Of Origin”

XFM: A 32-Voice Polyphonic FM Synthesizer On An FPGA

There’s something about Frequency Modulation (FM) synthesizer chips that appeals to a large audience. That’s one of the reasons behind [René Ceballos]’s XFM project, aiming to duplicate on an FPGA the sound of pure-FM synthesizer chips of the past such as the Yamaha DX series, OPL chip series and TX81Z/802/816. The result is a polyphonic, 32-voice, 6-operator FM synthesizer stereo module.

The project page goes into a lot of detail about the design choices which ultimately led to XFM being implemented on an FPGA, instead of using a dedicated DSP or MCU. Coming from the world of virtual synthesizers running on PCs, [René ]’s first impulse was to implement something on a Raspberry Pi or equivalent. Unfortunately these boards require a lot of power (ruling out battery-powered operation) and can hardly be called real-time, which led [René ] to abandon this attempt.

The design choice against the use of an MCU is simple: though capable of real-time processing, they lack the necessary power to make them a good choice for audio-processing. Working through the calculations to determine what kind of processing power would be needed, it was found that around 650 MIPS would be needed, a figure which most MCUs struggle to achieve a fraction of.

As one of the further requirements for XFM was that it should be as cheap as possible, this ruled out as too expensive the DSP chips which do have the power and hardware features needed. The component chosen was a Xilinx Spartan 6 FPGA, which though somewhat infamous and shunned in FPGA circles turns out to be a very economical option for this project.

Continue reading “XFM: A 32-Voice Polyphonic FM Synthesizer On An FPGA”

Brain-Computer Interfaces: Separating Fact From Fiction On Musk’s Brain Implant Claims

When it comes to something as futuristic-sounding as brain-computer interfaces (BCI), our collective minds tend to zip straight to scenes from countless movies, comics, and other works of science-fiction (including more dystopian scenarios). Our mind’s eye fills with everything from the Borg and neural interfaces of Star Trek, to the neural recording devices with parent-controlled blocking features from Black Mirror, and of course the enslavement of the human race by machines in The Matrix.

And now there’s this Elon Musk guy, proclaiming that he’ll be wiring up people’s brains to computers starting next year, as part of this other company of his: Neuralink. Here the promises and imaginings are truly straight from the realm of sci-fi, ranging from ‘reading and writing’ to the brain, curing brain diseases and merging human minds with artificial intelligence. How much of this is just investor speak? Please join us as we take a look at BCIs, neuroprosthetics and what we can expect of these technologies in the coming years.

Continue reading “Brain-Computer Interfaces: Separating Fact From Fiction On Musk’s Brain Implant Claims”